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-is paper analyses the robustness of specific public transport networks. Common attributes and which of them have more
influence on the networks’ vulnerability are established. Initially, the structural properties of the networks in two graphical
representations (L-Space and P-Space) are checked. Afterwards, the spread of problems (traffic jams, etc.) are simulated,
employing a model based on a propagation and recovery mechanism, similar to those used in the epidemiological processes. Next,
the size of the largest connected subset of stops of the network (giant component) is measured. What is shown is that the faults
randomly happened at stops or links, also displaying that those that occurred in the highest weighted links spread slower than
others. -ese others appear at stops with the largest level of betweenness, degree, or eigenvector centralities and PageRank. -e
modification of the giant component, when several stops and links are removed, proves that the removal of stops with the highest
interactive betweenness, PageRank, and degree centralities has the most significant influence on the network’s integrity. Some
equivalences in the degree, betweenness, PageRank, and eigenvector centrality parameters have been found. All networks show
high modularity with values of index Q close to 1. -e networks with the highest assortativity and lowest average number of stops
are the ones which a passenger can use to travel directly to their destination, without any change. -e Molloy–Reed parameter is
higher than 2 in all networks, demonstrating that high integrity exists in them. All stops were characterized by low k-cores ≤3.

1. Introduction

-e question of vulnerability of a public transport network
(PTN) against problems in nodes or links is a matter of high
interest. All nodes and links may accidentally fail with a
similar probability, but the severity of the damage caused is
higher when it occurs in some nodes or links rather than in
others. -e PTN is a key issue in the main cities of the world,
having to operate efficiently on a constant basis. -ey must
display a high tolerance to problems, keep the possible delays
to a minimum, and manage the duration of a journey in
accordance with the trip planning. With the purpose of
persuading passengers to make use of the PTN, some
strategies should be implemented to ensure the continued
running of networks, the prevention of problems before, and
the mitigation of losses during and after the failure [1, 2].

-is paper analyses the vulnerability of some PTNs. -e
study firstly focuses on the analysis of the structural
properties of the PTN (betweenness centrality, degree,

eigenvector centrality, PageRank, average path length, k-
core, modularity, and assortativity). Next, the fault propa-
gation is simulated (e.g., traffic jams caused by accidents or
roadworks), employing different selection criteria of nodes
and links, in order to detect the stops in whose immediate
vicinity congestion is more prone to happening. A procedure
based on epidemic spread algorithms is used. -e effect of
the structure of the network on the failure propagation is
also examined. Finally, the size of the largest connected
subset of stops of the PTN (giant component, GC) is esti-
mated, which is calculated when several stops and links are
disconnected according to certain criteria. Depending on the
value of this magnitude, a serious issue could occur due to
the existence of inaccessible routes (construction work or
redesign activities in networks), which cause unavoidable
stops or important delays during a trip. -e analysis allows
the identification of the most critical stops and links of a
PTN and establishes a subnetwork of highly connected
stops.
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Ten networks are analysed. -ey are Auckland in New
Zealand, which consists of 5223 stops and 318,896 links;
EMT in Madrid, Spain, which has 4636 stops and 2,070,508
links; BC Transit in Vancouver, Canada, which consists of
3981 stops and 702,197 links; Kolumbus in Rogaland,
Norway, which has 3828 stops and 487,432 links; AVL, CFL,
RGTR, and TICE in Luxembourg which contains 1372
nodes and 340,684 links; STAR in Rennes, France, which
consists of 1415 stops and 9,477,213 links; -under Bay
Transit, in Ontario, Canada, which contains 825 nodes and
78,247 links; TransAntofagasta, in Chile, which has 650
nodes and 724,362 links; Linja-Karjala Oy, in Kuopio,
Finland, which contains 551 nodes and 63,339 links; and
finally, CIT Chambly-Richelieu-Carignan, in Quebec,
Canada, which consists of 346 nodes and 9366 links. -e
reason for the selection was to have networks of various sizes
(small, medium, and large) and topologies.

Specifically, the goals of this research are as follows:

(1) Analysis of the robustness of some PTNs: detection
of commonalities and key aspects.

(2) Discovery of properties on a networkʼs vulnerability
that can be generalized.

Several investigations exist about PTN, some of them
describing a comprehensive survey of statistical properties of
PTN based on the data of several cities, and at the same time,
presenting models that reproduce the best part of their
properties [3]. Other research detects the critical nodes in
PTN in order to enable contingency mechanics in them.

Berche et al. [4] studied the PTNʼs resilience applying
different attack scenarios, which range from random failure
to targeted destruction. Some nodes are removed according
to certain operating characteristics. -e candidate nodes to
be eliminated were selected according to their highest de-
gree, closeness, graph, stress, and betweenness centralities, as
well as the largest clustering coefficient and next nearest
neighbouring number. In [5], an explanation exists of a
procedure for the detection of critical airports in the global
air transport network (ATN), which is based on simulating
an attack on specific airports using several adaptive selection
criteria. Wandelt et al. [6] evaluated several strategies for
dismantling of networks and identified large heterogeneities
in their performance. -e authors show that the use of the
interactive betweenness creates far stronger attacks. Because
of the high complexity of this algorithm, the authors rec-
ommend its use on small networks. After, in [7], the authors
propose approximations to interactive betweenness in order
to improve the computational cost of the algorithm. Other
research analyses the effect that the addition of new links has
on the robustness of the networks or design methodologies
in order to detect the most vulnerable links in PTN [8].

-e robustness of a network can be estimated in terms of
passenger welfare [9]. Additionally, the accessibility of the
PTN is evaluated by several types/examples of research.
Albacete et al. [10] compared and applied two location-based
methods to analyse PTN accessibility. -e results had
considerable implications for transport policy making. In
[11], a thorough assessment is carried out, focusing on the

possible applications of an optimization-based scheme for
the building of several timetables and proactive railway
traffic management. -is is carried out over a large network,
employing stochastic disturbances. Wandelt et al. [12]
proposed a framework to evaluate and improve the ro-
bustness of transportation systems by exploiting the exis-
tence of communities. -e method is applied to several real-
world transportation systems. Sun et al. [13] studied the
resilience of cities when disruptions in their airports happen.

Relationships between robustness and accessibility are
also studied [14, 15]. Other authors suggested methods and
spread models which analyse the performance of networks.
He et al. [16] defined a mathematical model to evaluate the
effect of the propagation of the risk of failure in multimodal
transport networks. Baspinar and Koyuncu [17] proposed a
new model for the air transportation network under stress
and defined parameters in order to describe not only air
sectors, but also airports, as well as flights. -ey used epi-
demic spreading processes by assuming that the charac-
teristics of disease spreading and the delay propagation are
similar. Akdere et al. [18] studied the reliable data dis-
semination in the context of wireless sensor network en-
vironments. It shows the applicability of epidemic spread
algorithms in those environments and carries out a com-
parative performance analysis of several mechanisms in
terms of message delivery rate, average message latency, and
messaging overhead on the network. As other research
suggests, Nekovee [19] presented a new epidemic algorithm
for information dissemination in highly dynamic and in-
termittently connected vehicular ad hoc networks
(VANET). It shows through realistic simulations of highway
traffic that the proposed algorithm is suitable to achieve a
reliable and efficient level of information transmission in a
context with frequent network fragmentation and large
density variations.

-is paper is organized as follows: firstly, resources and
methods used in this work are explained in detail. It focuses
on the used data and the developed software programs,
which correspond with the design of the network and the
employed parameters to characterize the networks’ topol-
ogy.-e propagationmodel and the study of evolution of the
GC when certain elements are removed are also studied.
Afterwards, the results, conclusions, and future projects are
described and discussed.

2. Materials and Methods

2.1. Overview of Used Resources. Information of stops and
routes of Auckland, EMT, BC Transit, Kolumbus, STAR,
AVL, CFL, RGTR, TICE, -under Bay Transit, Trans-
Antofagasta, Linja-Karjala Oy, and CIT networks was re-
trieved from public sources (see the Data Availability section
for details). Several programs in R [20] and Python [21] were
implemented, using the R.3.6.0 and 3.8.3 version, respec-
tively. We use the Python networkx and pathpy packages
and the igraph R package. -e programs followed the typical
development life cycle with stages of specification, design,
and testing.
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2.2. Overview of Used Methods. -e structural properties of
the networks are analysed. A new propagation algorithm,
which was designed and undertaken in the networks in order
to simulate the spread of a failure, is detailed.-is is followed
by a description of how the evolution of the GC is calculated,
with the aim of studying the specific impact a problemmight
have on each network.

2.3. Studyof Structural Properties. A PTN can be represented
in two topological spaces L-Space [22, 23] and P-Space
[2, 24]. In both spaces, the network is mapped as a graph
G� (N; L), where N is the set of nodes symbolizing the stops
and L is the set of links established between them. In
L-Space, one node symbolizes one stop, and one link means
a union between two consecutive stops, which tells us there
is a link between two stops, if one stop is the successor of the
other on a route. -is space aims to show the geographical
proximity between stops. In the P-Space [2, 24], one node
represents one stop, and one link joins a pair of stops, if at
least one route provides direct service between them. A link
means that passengers can take at least one route for a direct
trip between two stops. If travellers have to exchange routes,
then the pair of stops is joined by more than one link. -is
space aims to show the transfer relationship between routes.

In L-Space and P-Space, the average values of be-
tweenness (<BC>) and eigenvector (<EC>) centralities, the
PageRank <PR>, and degree (<k>) of nodes as well as the
minimum distance between nodes distributions were esti-
mated. Pagerank was measured considering a damping
factor equal to 0.85. In order to determine if the degree
distributions, similar in a way to what happens in other
networks [3, 25], followed a power law function, this
characteristic was also analysed. Next, all these magnitudes
are defined:

(i) -e degree of a node i, k(i), for an undirected graph,
G, such as a PTN, is [26]

k(i) � 􏽘
N

j�1
Aij, (1)

where Aij is the element ij of the adjacency matrix,
for example, Aij � 1 if the node iis linked to node j

and 0 otherwise.
(ii) -e minimum distance between two nodes i, j in G,

l, is the length of the shortest path between them.
(iii) -e betweenness centrality of a node iin G, BC(i) is

[27]

BC(i) � 􏽘
u≠i≠w

σu,w(i)

σu,w

, (2)

where σu,w is the total number of shortest paths
from node u to node w and σu,w(i) is the number of
those paths that pass through i.

(iv) Regarding the eigenvector centrality of a node i inG,
EC(i) [28, 29]:

λ1, λ2, λ3,, . . . , λN are the eigenvalues of the adja-
cency matrix A � Aij􏽮 􏽯 of G. -en, the largest ei-
genvalue of matrix A is λmaxwith an eigenvector
e � [e1, e2, . . . , eN]T such that λmax ∗ ei � 􏽐

N
j�1 Aij

∗ ej. -e eigenvector centrality for node i denoted
as EC(i) can be defined as

EC(i) �
1

λmax
􏽘

N

j�1
Aij ∗ ej. (3)

(v) Pagerank, PR, of a node i in G is [28, 30]

PR(i) �
q

N
+(1 − q) 􏽘

j:j⟶i

PR(j)

kout (j)
, i � 1, 2, 3, . . . , N,

(4)

where N is the number of nodes inG, PR(j) is the PageRank
of a node j, and kout(j) is the outdegree of node j. We add
(PR(j)/kout(j)) for all nodes with a link ending in i. In the
case of the PTN, it is considered that G is an undirected
graph; therefore, kout(j) � k(j). q is the damping parameter,
∈ [0, 1].

Regarding the modularity of the network, in L-Space,
this was calculated employing the generate overlapping
cluster generator (OCG) method [31]. -e clusters were
originally hierarchically joined together, optimizing the
modularity of the partition, resulting in overlapping clusters.
Similarly, to what happens in the protein networks, the
uniqueness of node categorization prevents from disclosing
the implication of some stops in various trip processes. In
L-Space, the assortativity parameter [32] which determines
the tendency of nodes being connected to other similar ones
was also estimated. Additionally, the Molloy–Reed param-
eter (MRP) [33] was calculated to know the structural in-
tegrity of the networks.

2.4. Simulation of Faults Propagation. In the L-Space, the
propagation of failures in each network is simulated using an
infection and recovery mechanism, which consists of the
following steps:

Calculate the total number of nodes in the network (N),
Initialize the infection rate (IR� 0),
Infect the first node,
Calculate the total number of infected nodes in the
network (µ′),
Initialize time (t� 1),
while (IR< 0.60) and (t<T):
{

Obtain all uninfected nodes in the network,
uini􏼈 􏼉

i�µ
i�1, µ being the total number of uninfected nodes.
For i� 1 to µ
{
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Obtain the neighbour nodes of uini nnui{

ni−j}
j�ci

j�1 , ci being the total number of neighbours of uini
For j� 1 to ci:
{

If RandomBinomial (µ′, pI)> 0
nnuini−j is still infected

Else
To disinfect nnuini−j

}
}
Calculate how many nodes are infected (δ),
For i� 1 to δ:

{
If RandomBinomial then (1, pR)> 0

then
To disinfect ini , pR being the recu-

peration probability,
Else

To infect ini
}

Calculate the total number of infected nodes in the
network (µ′)

Calculate IR as:
IR � µ′/N
}
where RandomBinomial (n, p) is a generator of random
numbers, which are calculated from the binomial
distribution specified by the number of trials n and the
probability of success for each trial p. -e np.ran-
dom.binomial function in python is used.

Several simulations were carried out until a time T and
without reaching 60% percent of the total of infected nodes
in each transport network. pI and pR were modified in the
range 0 to 0.1 in steps of 0.0025 (values were considered
within a range of 0-0.1, because with pI> 0.1, all networks
very quickly reached 60% infection (they were saturated in a
short time for all groups). It was checked if some differences
existed when the propagation process started in nodes with
specific characteristics, such as nodes with the highest be-
tweenness (B) and eigenvector centralities (E), nodes with
the largest PageRank (P) and degree (D), and nodes ran-
domly selected (A). Pagerank was estimated considering a
damping factor equal to 0.85. Once the simulation was
concluded, the existing differences between groups (B, E, P,
D, A) were analysed. -e following procedure was carried
out:

(1) -e normality of distributions was tested using the
D’Agostino test [34] with a significance level
α� 0.05.-is test provides very effective results when
it is applied to large size samples [34, 35]. -e
considered hypothesis was as follows:

(i) H0: “the samples came from a normal
distribution.”

(ii) Ha: “the samples did not come from a normal
distribution.”
If p value≤ α, H0 is rejected and Ha is taken, else
H0 is accepted.

(2) If normality existed, the homoscedasticity of vari-
ances would be studied in each distribution using the
Breusch–Pagan test [36] with a significance level of
α� 0.05. -e following hypothesis should be taken
into account:

(i) H0: “the variance was constant.”
(ii) Ha: “the variance was not constant.”

Again, if p value≤ α, H0 should be rejected and Ha
should be accepted; otherwise, Ha should be taken.

(3) If there was no normality or homoscedasticity in the
distributions, the Kruskal–Wallis test [37] should be
executed in order to detect whether the population
distributions were identical, or at least one differed
from the rest. -e used significance level was
α� 0.05. -e hypothesis employed was as follows:

(i) Null hypothesis: “the groups were from identical
populations.”

(ii) Alternative hypothesis: “at least one of the
groups comes from a different population than
the others.”

(4) In the next step, theWilcoxon rank sum test [37] was
executed with a significance level α� 0.05 in order to
realize a pairwise comparison between groups. -e
hypothesis was as follows:

(i) Null hypothesis: “both groups had the same
distribution.”

(ii) Alternative hypothesis: “both groups have a
different distribution.”

(5) If there are normality and homoscedasticity, the
analysis of variance (ANOVA) method was realized.

2.5. Analysis of Evolution of the GC. -e size of the GC
describes the largest fraction of overall nodes such that any
pair of them is linked through a path. It evaluates the largest
extension that a route (or a union of them) provides in terms
of the available stops a traveller can reach from an origin
inside the GC.

In the L-Space, for each network, the size of GC was
calculated as nodes and links were removed according to the
following criteria: links (criterion 1) or nodes (criterion 2)
randomly eliminated; nodes removed in descending order of
betweenness centrality (criterion 3), degree (criterion 4),
eigenvector centrality (criterion 5), and PageRank (con-
sidering a damping factor equal to 0.85) (criterion 6); and
the highest weighted links removed (criterion 7) following a
decreasing sequence. In this criterion, a weighted graph was
built where the weight of each link, wij, represented the
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number of links between the nodes i, j and the highest
number of links between two nodes in the entire network.
Finally, the interactive betweenness calculation was carried
out (criterion 8). -is criterion, instead of removing the
nodes in decreasing order of the static betweenness,
recomputes the betweenness after the removal of a node.

It is relevant to analyse which of the used criteria allow us
to achieve an 80% reduction in the size of GC in less time. It is
true that when the network is fragmented, the stops belonging
to the GC are linking a fraction of the PTN, which can still be
functional in certain cases. However, it is also relevant to
observe the evolution of size over time in order to estimate the
attack tolerance. Several commonalities and differences be-
tween PTN can be detected. -e relevance of studying the
evolution of PTN is also corroborated by the interdepen-
dencies between PTN and the accessibility to other infra-
structures such as hospitals, business centers, schools, and
airports. -erefore, the fluctuations in the availability of stops
and routes might greatly impact urban life.

3. Results and Discussion

3.1. Study of Structural Properties. -e PageRank (with a
damping parameter equal to 0.85), betweenness and ei-
genvector centralities, degree, and minimum distance
characteristics were analysed in the L-Space and P-Space.
Figures 1 and 2 show the L-Space for all studied networks.
-e average values of degree, PageRank, eigenvector, and
betweenness centralities for this space can be observed in
Table 1.-ose correspond to degrees, which are similar in all
networks.-e average eigenvector and PageRank centralities
are lower than 0.002, having very small values in all net-
works.-erefore, the failures randomly happening in a node
will have a low probability of arriving at any other. -e same
happens with respect to betweenness centrality, presenting
small magnitudes (a mean value minor than 0.025), which
denotes a slight average in how a node plays a bridging role
in a network. Table 1 also shows the value of MRP in all
networks, proving the existence in them of a GC (MRP >2).

In L-Space, an equivalence between the degree distributions
of the PTN of some cities was pointed out by Von Feber et al.
[3], where the authors showed that this distribution followed a
power law. -is characteristic was checked for the analysed
networks, fitting their degree distribution to the function:

P(k) ∼ k
−α

. (5)

-e obtained values for the fitting are shown in Table 2. It
is observed, according to the R square value, that those ob-
tained for the fitting were not good (R squared is not close to
1). Figure 3 depicts, in L-Space, the degree distribution for the
analysed networks. It is clear that all of them have a low value
of k (kmax≤ 17) compared with the total links. -erefore, the
failures occurring at random on a node will have a high
probability of having a small impact. Even so, these networks
might be vulnerable to disruptions since a very high amount
of nodes is joined to very few other nodes (low degree).

It is clear from the above that the values of betweenness,
eigenvector, and PageRank centralities in the analysed
networks ensure that they are highly robust against random
failures.

-e lowest average minimum distance between nodes
shows a relevant variability in all networks. Trans-
Antofagasta and EMTas well as AVL, CFL, RGTR, and TICE
networks have the lowest value. -e highest value corre-
sponds to -under Bay Transit network.

-e modularity of the network is also evaluated in
L-Space, employing the generate overlapping cluster gen-
erator (OCG) method [31]. It can be noted in Table 3 that all
networks show a high value of Q with magnitudes near to 1,
which demonstrates a strong community structure in these
networks. Romano et al. [38] showed that network efficiency
is modularity dependent, with the highest values of trans-
mission occurring at intermediate levels and low values of
modularity. High values tend to negatively influence
transmission in networks [38]. -erefore, the high modu-
larity in PTN could help to slow down the propagation of a
failure in the network.

Table 4 depicts the values of the assortativity coefficient
[32]. All networks show assortative higher than 0.4, dem-
onstrating that a significant chance exists in which fractions
of stops will randomly join with stations of the same degree.
-e nodes appear to join with a specific preference. A failure
in a node with the highest degree will not have much
negative impact, since other nodes with the highest degree
are still connected to ones with a similar degree.

-e highest k-core in all networks was 3 or 2, demon-
strating that the largest subgraphs exist where every node is
connected to at least 3 or 2 other nodes within the network.
Most nodes show a small and similar k-core (≤2).

With respect to P-Space, Table 5 shows the average
values of eigenvector and betweenness centralities, Pag-
eRank, degree, minimum distance between nodes, diameter,
and density.

-e degree distributions of the analysed networks were
also fitted to a power law function according to equation (5).
-e results are shown in Table 6. It can be noted that, as in
the case of L-Space, in accordance with the obtained R
square value, the fitting is not good. P-Space allows us to
analyse interconnections between routes and transfers in the
network. In this space, k reveals how many stops a person
can travel through by using only one route. -e network
with the highest value average k, <k>, is TransAntofagasta.
-e obtained values for eigenvector and PageRank cen-
tralities are very low and similar in all networks, reinforcing
the idea exposed in the analysis of L-space that failures
randomly occurring in a node have a low probability of
quickly arriving at any other one. Many possible transfer
nodes exist, making the values for betweenness centrality
very small and achieving high robustness against random
failures on a node. -e PTNs with lower <l> are the best
connected in this space, having aminor level of vulnerability.
Figure 4 shows, in P-Space, the degree distribution for the
analysed networks.
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(a) (b) (c)

(d) (e)

Figure 1: In L-Space, for EMT (a), BC Transit (b), Kolumbus (c), Auckland (d), and TransAntofagasta (e) networks.

(a) (b) (c)

Figure 2: Continued.
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3.2. Simulation of Faults Propagation. Failure propagation
was simulated in L-Space using an infection and recovery
algorithm.

(1) Firstly, a total of 100 experiments for each selection
criterion and duple (pI, pR) were undertaken in each
network. In each experiment, the simulation was
implemented until t�T or until the percentage of
infected nodes was higher or equal to 60%. -e
values of t were modified in steps of 10 units.

(2) -e second step was to check the normality of
distributions of the infection rate (IR), in all groups
(A, B, D, E, P) using the D’Agostino test for any T,
which took different values until reaching a level
propagation ≥60% of the network. -e results show
that p value was not higher than 0.05 in all cases.
Since not all distributions presented normality, it was
not necessary to study the homoscedasticity of
variances applying the Breusch–Pagan Test. -e
Kruskal–Wallis test could be used for the detection
of differences between groups.

(3) -e third step was using the Kruskal–Wallis test to
verify for each T, whether all groups (A, B, D, E, P)
were identical or by contrast, one of the groups

(d) (e)

Figure 2: In L-Space, for Linja-Karjala Oy (a), AVL, CFL, RGTR, and TICE (b), STAR (c), CIT (d), and -under Bay Transit (e) networks.

Table 1: Structural properties in L-Space. Average Betweenness Centrality (<BC>), average degree (<k >), average Eigenvector Centrality
(<EC>), average PageRank (with a damping factor� 0.85) (<PR>), average path Length (<l>), diameter (d), density, and MRP.

Network Number of
nodes

Number of
links <BC> <k> <EC> <PR> <l> d Density MRP

Auckland 5,223 318,896 0.00655 2.36071 0.00217 0.00019 2.69523 151 0.00045 2.66878
EMT 4,636 2,070,508 0.00383 2.71140 0.00181 0.00022 1.00000 61 0.00058 3.21782
BC Transit 3,981 702,197 0.00233 2.28894 0.00167 0.00025 9.11427 83 0.00058 2.54653
Kolumbus 3,829 487,432 0.00258 2.59546 0.00216 0.00026 2.89389 98 0.00068 3.24314
STAR 1,415 661,150 0.00664 2.81696 0.00559 0.00071 10.0000 37 0.00199 3.54340
AVL, CFL, RGTR, and TICE 1,372 340,684 0.00706 2.81050 0.00564 0.00072 1.00000 34 0.00205 3.79201
-under Bay Transit 825 78,247 0.03499 2.17697 0.00560 0.00121 29.79 92 0.00264 2.35412
TransAntofagasta 650 724,362 0.02436 2.96308 0.00902 0.00154 16.78525 51 0.00456 3.46729
Linja-Karjala Oy 551 63,399 0.01611 2.55898 0.01497 0.00181 4.50476 29 0.00465 3.18865
CIT 346 9,366 0.02714 2.24855 0.01700 0.00289 2.33333 29 0.00651 2.75804

Table 2: Fitting in L-Space of the network degree distribution to a
power law function P(k) ∼ k−α.

L-Space
Network α R square
Linja-Karjala Oy 0.158 0.600
Kolumbus 0.459 0.330
EMT 0.622 0.239
Auckland 0.603 0.237
BC Transit 0.412 0.161
AVL, CFL, RGTR, and TICE 0.236 0.156
CIT 0.302 0.156
-under Bay Transit 0.406 0.068
TransAntofagasta 0.182 0.044
STAR 0.158 0.041
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Figure 3: Continued.
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tended to give observations that were different from
those of other groups. Again, the p value obtained
was lower than 0.05. -e null hypothesis had to be

rejected because at least one group had a different
distribution.

(4) -e fourth step was carried out utilising the Wil-
coxon rank sum test in order to compare paired
groups; we also applied the Bonferroni correction,
both with a significance level α� 0.05.

In all analysed duos (pI, pR), for EMT, there was a
significant difference (p value ≤ 0.05) between all groups
except between groups D-E. With respect to BC Transit
network, there were dissimilarities (p value ≤ 0.05) be-
tween some groups except between groups D-E, D-P, and
E-P. Regarding the Kolumbus network, a relevant simi-
larity is found between groups B-E and P-D. In the
Auckland network, similarities happened between groups
P-D, P-B, and D-B. For pI � 0.05 and pR � 0.0025, in
T �100, Figure 5 shows the results of the propagation
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Figure 3: Degree distribution in linear (x-axis) and linear scale (y-axis) for the following networks: EMT (a), BC Transit (b), Kolumbus (c),
Auckland (d), TransAntofagasta (e), Linja-Karjala Oy (f), AVL, CFL, RGTR, TICE (g), STAR (h), CIT (i), and -under Bay Transit (j).

Table 3: Q Modularity computed using the overlapping cluster
generator (OCG) method in L-Space.

Network Q
BC Transit 0.99750
Auckland 0.99610
EMT 0.98550
-under Bay Transit 0.99100
Kolumbus 0.98730
STAR 0.97020
AVL, CFL, RGTR, and TICE 0.96880
CIT 0.95880
TransAntofagasta 0.93910
Linja-Karjala Oy 0.93960
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algorithm in EMT, BC Transit, Kolumbus, and Auckland
networks. For the same values of pI and pR and T � 65,
Figure 6 shows the outcomes for STAR and AVL, CFL,
RGTR, and TICE networks. Figure 7 depicts the results for
TransAntofagasta, Linja-Karjala Oy, CIT, and -under
Bay Transit networks. For those values of pI, pR, and T,
Tables 7–16 show the obtained p value in the Wilcoxon
rank sum test in each network.

For STAR networks, in all studied duos (pI, pR) there
was a similarity (p value> 0.05) between groups B-D, B-E,
B-P, and D-P. In AVL, CFL, RGTR, and TICE network there
is an equivalence between groups E-D and B-P.

With respect to the TransAntofagasta network, a simi-
larity exists between groups D-P. In Linja-Karjala Oy and
CIF networks, there is a difference between groups A-B,
A-D, A-E, and E-P. Additionally, dissimilarities exist be-
tween B-E groups in the -under Bay Transit network.

In all analysed networks, according to the analysis
carried out, the A category presents differences with respect
to other groups, showing that those failures randomly
happening on a node have a distinct behaviour to those
originated by target attacks.

In all networks, for pI� 0.05 and pR� 0.0025, Tables 17
and 18 show the time in which IR reaches 60%.

It can be noted that in all analysed networks, random
failures take the longest propagation time, demonstrating, as
was previously covered in the section labelled study of
structural properties, that these networks are less vulnerable
to such failures. Depending on the network, some categories
(D, E, P, or B) show similar propagation times.-is seems to
point out that in some cases, there is an existence of a certain
amount of correlation between betweenness, degree, Pag-
eRank, and eigenvector centralities. Research shows that
topology and density significantly affect the correlation
between centrality measures and suggested that they could
also affect the robustness [39].

-e networks that showed reduced failure propagation
times were AVL, CFL, RGTR, and TICE; STAR; Linja-
Karjala Oy; and TransAntofagasta. However, those that
presented the highest times were in the order of BC Transit,
Kolumbus, Auckland, EMT, and finally -under Bay
Transit. In the magnitude of these times, there is an influence
of the diameter presented by the network in L-space.

3.3. Analysis of Evolution of the GC. It is necessary to know
the sensitivity of the network to the elimination of stops and
links according to certain criteria in order to investigate
which of them has a higher impact. For criteria 1–7, the
nodes are removed in blocks of five elements and the
percentage of the reduction in the GC is calculated. -e
applied criteria are the removal of random links (criterion 1)
and the removal of random nodes (criterion 2). Other
strategies such as the removal of nodes in the descending
order of betweenness centrality (criterion 3), degree (cri-
terion 4), eigenvector centrality (criterion 5), PageRank
(with a damping factor equal to 0.85) (criterion 6), and
highest weight links (criterion 7) are also applied. Using this
criterion, a weighted graph was built, in which the weight of
each link, wij, represented the portion of links taken from
the total number of links between i and j. -e interactive
betweenness calculation (criterion 8) was also used. Fig-
ures 8 and 9 show, in all networks, the obtained results for
the eight criteria.

In Table 19 and Figures 8 and 9, it can be observed that in
all networks, the four criteria that most quickly achieve 80%
of the reduction of the GC after removing a number of nodes
in the range [0%, 20%] have the highest interactive be-
tweenness, PageRank, degree, and static betweenness cen-
trality. And among them, in concordance with [6], in most
networks, the elimination of nodes with the highest be-
tweenness interactively calculated obtained an 80% reduc-
tion in the GC more rapidly, with a minor % of nodes
eliminated. -e criteria in which 80% was reached more
slowly were those with a removal of random links, random
nodes, the highest weighted links, and eigenvector centrality.

-e information above highlights the importance of
taking special protective measures at some stops. -e net-
works are more robust to failures in random links, random
nodes, the highest weighted links, and eigenvector centrality
than in the nodes with the highest interactive betweenness,
PageRank, static betweenness centrality, and degree. How-
ever, when the faults occur randomly, those happening in
links produce a higher impact. -ere is consistency with
[40], which proves that links are more robust than nodes
when the problems happen in highest degree nodes or in
links, for instance, with a weight based on passengers’ flow
between stops.

Table 4: Assortativity coefficients in L-Space.

Network Assortativity
Kolumbus 0.90599
STAR 0.89463
BC Transit 0.86067
Auckland 0.84123
Linja-Karjala Oy 0.81336
AVL, CFL, RGTR, and TICE 0.72469
EMT 0.67211
TransAntofagasta 0.58252
-under Bay Transit 0.45575
CIT 0.42243
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Table 5: Structural properties in P-Space. Average Betweenness Centrality (<BC>), average degree (<k>), average Eigenvector Centrality
(<EC>), average PageRank (with a damping factor� 0.85) (<PR>), average path Length (<l>), diameter (d), and density.

Network Number of nodes Number of links <BC> <k> <EC> < PR> <l> d Density
Auckland 5,223 8,079,095 0.00039 101.28508 0.02386 0.00019 2.69143 7 0.01940
EMT 4,010 25,263,108 0.00065 47.66983 0.04685 0.00025 3.59238 7 0.01189
BC Transit 3,981 15,737,729 0.00017 70.76714 0.03415 0.00025 2.65481 6 0.01778
Kolumbus 3,829 11,317,714 0.00028 78.98355 0.02584 0.00026 2.96889 7 0.02063
STAR 1,415 9,477,213 0.00137 43.11236 0.01862 0.00071 1.48276 6 0.03049
AVL, CFL, RGTR, and TICE 1,372 4,254,656 0.00120 48.42570 0.01791 0.00073 1.00000 6 0.03532
-under Bay Transit 825 2,014,779 0.00133 75.51030 0.02197 0.00121 2.09 4 0.09164
TransAntofagasta 650 31,171,307 0.00108 199.74769 0.03666 0.00154 1.70123 3 0.30778
Linja-Karjala Oy 551 1,167,682 0.00180 64.26860 0.03500 0.00181 1.47619 4 0.11685
CIT 346 135,740 0.00274 33.93478 0.03445 0.00289 1.00000 4 0.103578

Table 6: Fitting in P-Space of the network degree distribution to a power law function.

Network α R square
EMT 0.513 0.180
Kolumbus 0.169 0.166
Auckland 0.204 0.077
BC Transit 0.177 0.068
-under Bay Transit 0.275 0.047
TransAntofagasta 0.163 0.044
STAR 0.118 0.037
CIT 0.109 0.036
AVL, CFL, RGTR, and TICE 0.061 0.022
Linja-Karjala Oy 0.015 0.001
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Figure 4: Degree distributions in P-Space in linear (x-axis) and linear scale (y-axis) for the following networks: EMT (a), BC Transit (b),
Kolumbus (c), Auckland (d), TransAntofagasta (e), Linja-Karjala Oy (f), AVL, CFL, RGTR, and TICE (g), STAR (h), CIT (i), and -under
Bay Transit (j)
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Regarding k-core feature, it does not seem to influence
the level of impact that a failure originating from a node will
have on the network. -is is in line with some research
points, in reference to social networks, where in rumour
spreading models, only the k-core of a node does not de-
termine its propagation capacity [41].

Additionally, if some of the topological parameters in
L-Space, which are depicted in Table 1, are seen in con-
junction with the results shown in Tables 17 and 18, it can be
noted that the networks with the highest value of density and
lowest value of diameter are between those that obtain 60%
in the IR more quickly.
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Figure 5: In L-Space for (a) EMT, (b) BC Transit, (c) Kolumbus, and (d) Auckland networks. pI� 0.05, pR� 0.0025, and T�150 (boxplot
diagram for A, B, D, E, and P groups).
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Figure 6: In L-Space for (a) STAR and (b) AVL, CFL, RGTR, and TICE networks. pI� 0.05, pR� 0.0025, and T� 65 (boxplot diagram for A,
B, D, E, and P groups).
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Figure 7: In L-Space for (a) TransAntofagasta, (b) Linja-Karjala Oy, (c) CIT, and (d)-under Bay Transit. pI� 0.05, pR� 0.0025, and T� 65
(boxplot diagram for A, B, D, E, and P groups).

Table 7: In L-Space, for BC Transit network, pI� 0.05, pR� 0.0025, and T�150, p-value of the Wilcoxon rank sum test (resultant p-value
per Bonferroni correction is indicated in brackets).

A B D E
B <5.70e− 11 (8.60e− 10)
D 1.10e− 14 (1.60e− 13) 1.60e− 09 (2.30e− 08)
E 2.40e− 14 (3.50e− 13) 3.70e− 09 (5.50e− 08) 0.90000 (1.00000)
P 2.20e− 14 (3.30e− 13) 1.30e− 08 (2.00e− 07) 0.27000 (1.00000) 0.34000 (1.00000)

Table 8: In L-Space, for Kolumbus network, pI� 0.05, pR� 0.0025, andT�150, p-value of theWilcoxon rank sum test (resultant p-value per
Bonferroni correction is indicated in brackets).

A B D E
B <1.40e− 13 (2.00e− 12)
D 0.00473 (0.071) <2.00e− 16 (1.10e− 15)
E 3.00e− 14 (4.50e− 13) 0.44174 (1.000) <2.00e− 16 (1.00e− 15)
P 0.00554 (0.083) <2.00e− 16 (1.10e− 15) 0.99123 (1.000) <2.00e− 16 (1.00e− 15)

Table 9: In L-Space, for EMTnetwork, pI� 0.05, pR� 0.0025, and T�150, p-value of in the Wilcoxon rank sum test (resultant p-value per
Bonferroni correction is indicated in brackets).

A B D E
B <2.00e− 16 (<2.00e− 16)
D <2.00e− 16 (<2.00e− 16) 0.00027 (0.0041)
E <2.00e− 16 (<2.00e− 16) 1.40e− 06 (2.00e− 05) 0.30986 (1.00000)
P <2.00e− 16 (<2.00e− 16) <2.00e− 16 (2.00e− 16) <2.00e− 16 (<2.00e− 16) <2.00e− 16 (<2.00e− 16)

Table 10: In L-Space, for Auckland network, pI� 0.05, pR� 0.0025, and T�150, p-value of the Wilcoxon rank sum test (resultant p-value
per Bonferroni correction is indicated in brackets).

A B D E
B <2.00e− 16 (<2.00e− 16)
D <2.00e− 16 (<2.00e− 16) 0.49000 (1.00000)
E <2.00e− 16 (<2.00e− 16) 7.40e− 14 (1.10e− 12) 3.60e− 12 (5.30e− 11)
P <2.00e− 16 (<2.00e− 16) 0.54000 (1.00000) 0.96000 (1.00000) 1.00e− 12 (1.50e− 11)
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Table 15: In L-Space, for CIT network, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test (resultant p-value per
Bonferroni correction is indicated in brackets).

A B D E
B 1.30e− 13 (1.30e− 12)
D <2.00e− 16 (7.50e− 16) 1.00000 (1.00000)
E <2.00e− 16 (1.40e− 15) 0.29000 (1.00000) 0.20000 (1.00000)
P <2.00e− 16 (7.30e− 16) 0.63 (1.00000) 0.56 (1.00000) 0.41 (1.00000)

Table 16: In L-Space, for -under Bay Transit network, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test (resultant
p-value per Bonferroni correction is indicated in brackets).

A B D E
B 3.00e− 13 (3.00e− 12)
D <2.00e− 16 (1.50e− 15) 0.47900 (1.00000)
E <2.00e− 16 (5.60e− 16) 0.02700 (0.27000) 0.08300 (0.83000)
P <2.00e− 16 (9.30e− 16) 0.16900 (1.00000) 0.44800 (1.00000) 0.27900 (1.00000)

Table 13: In L-Space, for TransAntofagasta network, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test (resultant
p-value per Bonferroni correction is indicated in brackets).

A B D E
B 0.0013 (0.008)
D 1.80e− 11 (1.10e− 10) 5.50e− 07 (3.30e− 06)
E 1.70e− 14 (1.70e− 13) 2.90e− 14 (2.90e− 13) <2.00e− 16 (<2.00e− 16)
P 6.50e− 12 (3.90e− 11) 1.50e− 07 (8.90e− 07) 0.5348 (1.00000) <2.00e− 16 (<2.00e− 16)

Table 14: In L-Space, for Linja-Karjala Oy network, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test (resultant
p-value per Bonferroni correction is indicated in brackets).

A B D E
B 1.10e− 13 (1.10e− 12)
D 2.40e− 16 (2.40e− 15) 0.11600 (1.00000)
E 1.50e− 15 (1.50e− 14) 0.11000 (1.00000) 0.59500 (1.00000)
P <2.00e− 16 (3.20e− 16) 0.65500 (1.00000) 0.16400 (1.00000) 0.09800 (0.98000)

Table 11: In L-Space, for STAR network, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test (resultant p-value per
Bonferroni correction is indicated in brackets).

A B D E
B 1.20e− 10 (1.20e− 09)
D 5.70e− 12 (5.70e− 11) 0.056 (0.56)
E 2.90e− 14 (2.90e− 13) 0.752 (1.00000) 0.007 (0.07000)
P 1.20e− 12 (1.20e− 11) 0.193 (1.00000) 0.689 (1.00000) 0.01900 (0.19000)

Table 12: In L-Space, for AVL, CFL, RGTR, and TICE networks, pI� 0.05, pR� 0.0025, and T� 65, p-value of the Wilcoxon rank sum test
(resultant p-value per Bonferroni correction is indicated in brackets).

A B D E
B 2.30e− 14 (2.3e− 13)
D 2.00e− 16 (4.8e− 16) 1.70e− 07 (1.7e− 06)
E < 2.00e− 16 (3.1e− 16) 9.00e− 06 (9.0e− 05) 0.19 (1.00000)
P < 2.00e− 16 (<2e− 16) 0.19 (1.00000) 2.70e− 07 (2.7e− 06) 4.30e− 05 (0.00043)

16 Journal of Advanced Transportation



0

20

40

60

80

100

Evolution of GC

Si
ze

 re
du

ct
io

n 
(%

)

Random links removal
Random nodes removal
Nodes removal according to their betweenness
Nodes removal according to their degree
Nodes removal according to their eigenvalue
Nodes removal according to their PageRank
Weighted links removal
Nodes removal according to their interactive
betweenness

0 20 40 60 80 100
Removed elements (%)

(a)

Si
ze

 re
du

ct
io

n 
(%

)

Random links removal
Random nodes removal
Nodes removal according to their betweenness
Nodes removal according to their degree
Nodes removal according to their eigenvalue
Nodes removal according to their PageRank
Weighted links removal
Nodes removal according to their interactive
betweenness

0

20

40

60

80

100

Evolution of GC

Removed elements (%)
0 20 40 60 80 100

(b)

Figure 8: Continued.

Table 17: For pI� 0.05 and pR� 0.0025, average propagation time in which IR reached 60% in each group (A, B, D, E, P) and globally.

A B D E P All
Auckland 542.13 386.85 389.85 408.83 389.37 415.24
EMT 261.31 171.75 162.83 162.06 195.33 202.99
BC Transit >700 >700 >700 >700 >700 >700
Kolumbus 552.99 458.23 >700 489.01 >700 >700
STAR 116.75 93.51 99.74 95.09 97.88 99.67
AVL, CFL, RGTR, and TICE 121.37 84.42 90.43 89.58 83.73 91.51
TransAntofagasta >150 145 >150 101.16 >150 105.57
Linja-Karjala Oy 127.22 98.64 102.54 102.12 97.50 103.78
CIT 140.00 115.65 117.98 119.56 120.18 120.01
-under Bay Transit >150 >150 >150 >150 >150 >150

Table 18: For pI� 0.05 and pR� 0.0025, median propagation time in which IR reached 60% in each group (A, B, D, E, P) and globally.

A B D E P All
Auckland 545 385 390 409 388 399
EMT 249.50 169 164 161 193 181
BC Transit >700 >700 >700 >700 >700 >700
Kolumbus 547 455 >700 486 >700 486.50
STAR 112.50 94 98 95 99 99.67
AVL, CFL, RGTR, and TICE 116.00 84 89 90 81.50 88
TransAntofagasta >150 149 >150 100 >150 101
Linja-Karjala Oy 128 97 103 103 97 102
CIT 138 113 117 119 120 119
-under Bay Transit >150 >150 >150 >150 >150 >150
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Figure 8: Evolution of the GC in EMT (a), BC Transit (b), Kolumbus (c), and Auckland (d) networks.
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Figure 9: Continued.
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Figure 9: Evolution of the GC in AVL, CFL, RGTR, and TICE (a), STAR (b), TransAntofagasta (c), Linja-Karjala Oy (d), CIT Chambly-
Richelieu-Carignan network (e), and -under Bay Transit (f ).
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4. Conclusions

An efficient PTN must be robust to provide a good quality
service, even when it faces faults or disaster.-is study analyses
several PTNs, applying a methodology based on the study of
structural properties, simulations of faults propagation, and the
examination of the evolution of the GC. -e analysis aims to
detect the most vulnerable nodes and links when some faults
occurred in them.-e influence of the topological properties of
the networks over their robustness has also been checked. -is
could allow preventative action in certain nodes and links

against traffic congestion and unattainable stops, occurring as a
result of construction work and catastrophes.

Problems that happened at random nodes and over the
strongest links spread slower than other types of failure.
-ose nodes whose failures spread more quickly depended
on the network, but they were those with the highest be-
tweenness centrality, degree, or PageRank. All networks
show high modularity >0.8 and a Molloy–Reed parameter
>2. Additionally, all nodes were characterized by low k-core.

-e AVL, CFL, RGTR, and TICE networks were that
presented the highest-level propagation in a time T, for all

Table 19: Percentage of removed nodes with which the 80% of reduction in the GC is achieved.

Network Method % of removed
elements Network Method % of removed

elements

Auckland Pagerank centrality 4.98 EMT Interactive betweenness
centrality 8.35

Degree 7.47 Pagerank centrality 12.62
Interactive betweenness

centrality 8.67 Degree 13.70

Betweenness centrality 16.28 Betweenness centrality 24.38
Random links 28.79 Random links 47.02
Weighted links 56.85 Eigenvector centrality 51.02
Random nodes 61.99 Random nodes 52.42

Eigenvector centrality 64.66 Weighted links 60.22
BC Transit Pagerank centrality 4.52 Kolumbus Pagerank centrality 8.89

Degree 5.79 Degree 12.29
Interactive betweenness

centrality 9.55 Interactive betweenness
centrality 15.04

Betweenness centrality 15.58 Betweenness centrality 19.74
Random links 30.19 Random links 43

Eigenvector centrality 59.55 Weighted links 49.75
Weighted links 68.94 Random nodes 64.17
Random nodes 86.50 Eigenvector centrality 73.86

STAR Interactive betweenness
centrality 4.53 AVL, CFL, RGTR,

TICE
Interactive betweenness

centrality 3.57

Pagerank 14.18 pagerank 6.93
Degree 15.60 Degree 9.85

Betweenness centrality 17.73 Betweenness centrality 10.22
Eigenvector centrality 45.74 Random links 53.51

Random links 55.53 Eigenvector centrality 39.05
Weighted links 64.07 Random nodes 64.25
Random nodes 78.49 Weighted links 66.49

TransAntofagasta Interactive betweenness
centrality 6.63 Linja-Karjala Oy Interactive betweenness

centrality 5.27

Pagerank 17.83 Pagerank 13.64
Degree 22.48 Betweenness centrality 17.27

Betweenness centrality 30.23 Degree 19.09
Random links 45.31 Eigenvector centrality 37.27
Weighted links 45.83 Random links 52.48
Random nodes 65.12 Random nodes 63.51

Eigenvector centrality 79.84 Weighted links 73.76

CIT Interactive betweenness
centrality 2.90 -under Bay

Transit
Interactive betweenness

centrality 2.31

Pagerank 5.80 Pagerank 4.88
Degree 8.70 Degree 7.93

Betweenness centrality 13.04 Betweenness centrality 18.29
Random links 38.96 Random links 18.99
Random nodes 58.70 Random nodes 61.11

Eigenvector centrality 62.32 Eigenvector centrality 64.63
Weighted links 74.03 Weighted links 96.97
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analysed pairs (pI, pR), followed in descending order by STAR,
Linja-Karjala Oy, and TransAntofagasta. In the majority of the
networks, 80% reduction in the size of GC with the minor
percentage of removed nodes is reached for those nodes with
the highest betweenness calculated interactively. In a small
number of networks, this was achieved with the removal of
nodes with the highest PageRank. -e networks that showed
the highest amount of sensitivity were in sequential order of
-under Bay Transit; CIT; and AVL, CFL, RGTR, and TICE,
with 2.31%, 2.90%, and 3.57% of deleted nodes, respectively. In
all networks, random failures took the longest time to spread
across all networks, which proves, in conjunction with some
structural properties (k, PageRank, and eigenvector in
L-Space), that the networks are less vulnerable to such failures.

-is research can be continued by analysing passenger
flow in the PTN as a dynamically changing characteristic.
Some models that take into account the individual pas-
sengers’ behaviour, with respect to the choice of routes and
connections during a trip, can be implemented in order to
dynamically establish the possible consequences of the
congestion. It is also possible to study how the passengers
modified their travel behaviour when considering their
previous experience. Additionally, the PTN vulnerability can
be examined in other graph representations, as well as
considering different link weights, such as trip time or fi-
nancial costs. In addition to the above, in a catastrophic
situation, the postdisaster circumstances can be examined,
completing the analysis of the evolution of GC with a study
of the access to critical facilities (i.e., emergency services).

Data Availability

Information of stops and routes of Auckland, EMT, BC
Transit, Kolumbus, STAR, AVL, CFL, RGTR, TICE,
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companies public web sites, the Deconet Public Transport
Network Data and GTFS Data Exchange repositories
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