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Abstract: Schizophrenia is a major mental illness characterized by positive and negative symptoms,
and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely
neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments
for cognitive deficit, but the complexity of its etiology—in which neuroanatomic, biochemical and
genetic factors concur—has contributed to the lack of effective treatments. In the last few years, there
have been several attempts to develop novel drugs for the treatment of cognitive impairment in
schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the
importance of developing personalized treatments for schizophrenia which enhance neuroplasticity,
and of combining pharmacological treatments with non-pharmacological measures.
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1. Introduction

Schizophrenia is a major mental illness characterized by psychosis, apathy, social with-
drawal and cognitive impairment [1]. The symptoms of schizophrenia have been placed
into three categories: positive symptoms such as delusions and hallucinations [2]; negative
symptoms such as affective flattening, alogia and diminished emotional expression; and
cognitive deficit [3]. Although schizophrenia was considered an early dementia in the
19th century, the cognitive symptoms of schizophrenia have been largely neglected in the
treatment of the disease [4]. However, in the last few years, there has been a growing
interest in the study of cognitive impairment [5]. The reasons for this are that cognitive
impairment is one of the first symptoms to manifest in schizophrenia, it is disabling for
schizophrenic patients, and it contributes to their functional impairment [6]. Cognitive
deficit cannot be treated with current antipsychotic drugs, which can only effectively treat
positive symptoms of the disease [7]. Therefore, cognitive impairment in schizophrenia is
still a clear unmet clinical need.

Cognitive deficit comprises an impairment in several cognitive domains, such as pro-
cessing speed, attention, working memory, verbal and visual learning, problem solving and
social cognition [8]. This impairment is found even in the first episode of schizophrenia [9].

Cognitive deficit is a process involving genomic, neurobiological and neuroanatomic
factors that interact with each other in a complex way. The aim of this review is to go
over the etiology of neurocognitive impairment in schizophrenia and the status of current
research on the treatments for this symptom of schizophrenia.
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2. Etiology of Neurocognitive Impairment
2.1. Neuroanatomic Findings

Several image studies have described that cognitive deficit in schizophrenia is associ-
ated with cortical thickness [10–12]. Interestingly, this effect is more pronounced in women
than in men, where there may not even be a significant decrease in cortical thickness [13].
Indeed, cognitive deficit is related to other changes in brain structure and function, such
as a greater ventricular volume [14], a reduction in cerebellar volume [13], a decrease in
the function of basal ganglia [15] and a loss of dendritic spines in pyramidal neurons of
the dorsolateral prefrontal cortex (DLPFC) [16]. These changes could be related to the ob-
served disruption in cortico-cerebellar-thalamic-cortical circuits in patients suffering from
schizophrenia [17], and to the reduction in the metabolic rate of the prefrontal cortex [18].

Similar neuroanatomic changes have also been observed in animal models of schizophre-
nia [19] and, interestingly, in patients suffering from encephalitis caused by herpes virus [20].

Changes in brain neuroanatomy used to be attributed to disorders in neurodevelop-
ment [21,22], but it is now assumed that these disorders do not explain the whole process
and it is believed that cognitive impairment might be due to the cumulative effect of
neurodevelopmental abnormalities, changes in neuronal maturation and alterations in
neuroplasticity [23].

2.2. Biochemical Findings

Cognitive deficit in schizophrenia has been related to an increase in inflammatory
cytokines, to an imbalance in hormones such as cortisol and prolactin, in neurotrophic
factors such as BDNF and in neurotransmitters such as GABA and glutamate [24].

2.2.1. Inflammatory Cytokines

It has been observed that an increase in blood levels of C-reactive protein (CRP) is
related to a lower cognitive performance, especially in verbal management, visual and
working memory, processing speed, problem solving, executive function speed and in
attention according to the meta-analysis by Bora et al. [5]. Interestingly, reductions in CRP
levels are associated with an improvement in cognitive function [25].

Although the evidence is weaker than for CRP, an increase in other inflammatory
cytokines such as IL-1ß and IL-6 has been also observed in schizophrenic patients with
cognitive deficit [26,27]. These findings are in accordance with several studies that relate
inflammation and neurodegeneration [28].

2.2.2. Hormones

Cognitive deficit in schizophrenic patients has been linked to imbalances in serum
levels of cortisol and prolactin.

Cortisol is a hormone that participates in the response to stress and inflammation.
Moreover, cortisol easily crosses the blood–brain barrier, binding glucocorticoid receptors
in prefrontal cortex, hippocampus and amygdala [29]. Higher cortisol levels are associated
with lower hippocampal volume and lower BDNF expression [30,31]. Additionally, higher
levels of cortisol and greater blunting of the cortisol awakening response (CAR) are related
to poorer performance in cognitive tasks [32,33]. However, the influence of cortisol levels
on neuroanatomic findings and in cognitive performance may depend on the sex of the
patients and the clinical diagnosis of the patient [34].

Prolactin levels have also been linked to cognitive impairment. However, the study
of prolactin levels in schizophrenic patients is difficult because typical antipsychotics, as
D2 receptor antagonists, increase prolactin concentrations in blood because they block D2
receptors in the tuberoinfundibular pathway [35]. It has been observed that in antipsychotic-
naive schizophrenia patients, higher levels of prolactin are related to poorer cognitive
performance [36]. The reasons for this poorer performance are not clear, but it was observed
that there is a decrease in grey matter volume in patients with hyperprolactinemia [37],
and that prolactin levels are related to higher inflammatory markers [38].
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2.2.3. Neurotrophic Factors

BDNF is a neuropeptide that enhances brain remodeling and synaptic plasticity. It
was observed that reduced levels of BDNF are related to lower cognitive capacities in
patients with schizophrenia [39,40]. This reduction in BDNF levels has also been observed
in other pathologies related to cognitive deficit. Vasconcelos et al. observed that this
reduction in BDNF is related to an increase in oxidative stress in schizophrenic patients,
as the administration of alpha-lipoic acid, a drug that counteracts free radicals, increases
BDNF and improves cognitive capacities in animal models of schizophrenia [41]. Indeed,
clozapine, an antipsychotic drug that improves negative symptoms and cognitive capacities
in schizophrenic patients, increases brain BDNF levels [42]. The influence of variants of
BDNF in cognitive deficit has also been studied; one example is BDNF Val66Met, which is
related to a worse cognitive function [43,44]. However, there is a great deal of variability
between different studies because of the heterogeneity among ethnic groups.

2.2.4. Neurotransmitters

Cognitive deficit in schizophrenia has been linked to imbalances in neurotransmit-
ters such as glutamate, GABA, dopamine, acetylcholine and histamine [45]. Glutamate
and GABA play a major and well-known role in cognitive deficit in schizophrenia. An
imbalance in both neurotransmitters was observed in DLPFC [46]. This area is associated
with working memory—that is, the ability to manipulate information to guide behavior or
thought [47]. The performance of working memory tasks implies the activation of the area
showing an increase in gamma oscillatory activity (30–80 Hz) of glutamatergic pyramidal
neurons, whose synchrony is regulated by GABA and glutamate [48]. In patients with
schizophrenia-related cognitive deficit, there is no increase in gamma oscillatory activity in
response to working memory demands [49].

It has been described that in patients suffering from schizophrenia-induced cogni-
tive deficit there is a reduction in the glutamatergic stimulation of NMDA receptors in
pyramidal neurons [50]. The activation of NMDA receptors depends upon the binding of
co-agonists such as D-serine and glycine [51]. In schizophrenia-induced cognitive deficit
there is a higher blockage of glycine sites in NMDA receptors due to higher levels of
kynurenic acid in dorsal prefrontal cortex [52]. Inflammatory cytokines have also been
reported to increase kynurenic acid levels, linking the observed increase in inflammatory
cytokines with imbalances in glutamate signaling in schizophrenia subjects [53]. This is in
agreement with the fact that most animal models of schizophrenia implicate the adminis-
tration of drugs that block NMDA receptors to the animals, such as MK-801 (dizocilpine),
ketamine or PCP (phencyclidine) [54].

However, the reduced sensitivity of NMDA receptors in pyramidal neurons in schizophre-
nia patients does not implicate a reduction in glutamate in DLPFC [55]. In fact, it has been
described that glutaminase, the enzyme that participates in glutamate synthesis, is highly
overexpressed in schizophrenia subjects [56]. Furthermore, there is an increase in the
expression of metabotropic glutamate receptors in DLPFC of schizophrenia patients [57].
Those receptors exert a presynaptic regulation of glutamatergic signaling [58].

These imbalances in glutamatergic signaling are accompanied by changes in GABAer-
gic inputs to pyramidal neurons, which are also crucial for pyramidal neurons’ synchronic-
ity [59]. It was observed that in schizophrenia subjects there is a reduction in the expression
of the 67 kDa isoform of glutamate decarboxylase (GAD67) [60]. This enzyme synthetizes
GABA, and its deficit suggests a reduction in GABAergic signaling in DLPFC. This is
consistent with the observed reduction in parvalbumin (PV) in DLPFC [61]. PV is a marker
of GABAergic interneurons on DLPFC that buffers calcium facilitating GABA release [62],
which modulates the activity of pyramidal neurons [63]. The reduction in PV suggests that
there is a reduction in GABA-mediated synapsis.

There is also a reduction in other subpopulations of GABAergic neurons, such as
somatostatin (SST)-expressing GABAergic neurons. A global reduction in SST expression
in DLPFC in schizophrenia patients has been reported [64].
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Although not fully described, changes in other neurotransmitters such as acetylcholine,
histamine or dopamine have been reported in schizophrenia-induced cognitive deficit
patients [46]. It has been suggested that there is a relationship between a decrease in striatal
dopamine and the observed disruption in cortico-cerebellar-thalamic-cortical circuits in
cognitive deficits in schizophrenia [65,66].

Recently, it has been demonstrated that the acetylcholinesterase blocker galantamine
improves cognitive deficit in schizophrenia, suggesting that a reduction in acetylcholine
signaling may play a role in cognitive deficit [67]. It has also been observed that, in
schizophrenic patients, there is lower M1 receptor binding in the hippocampus, which
results in impaired learning [68].

The role of histamine in cognitive deficit in schizophrenic patients is unclear, but
Jin et al. described an increase in the expression of histamine H3 receptors in prefrontal
cortex neurons of schizophrenic patients. These data suggest that the H3 receptor may play
a role in cognitive decline in those patients [69].

2.3. Genetic Findings

Schizophrenia is a multifactorial disease whose etiology involves the interaction
between environmental and genetic factors (see [70] for a review). Several genes related to
cognitive deficit in schizophrenia have been identified.

Most of them encode proteins that participate in neurotransmission, such as the
glutamate receptor-encoding GRIN2B and GRIN2A genes, the serotonin receptor-encoding
HTR2A gene or the COMT gene [70]. COMT encodes catechol-O-methyltransferase, the
enzyme that degrades catecholamines such as noradrenaline and dopamine [71]. Val158Met
COMT polymorphism has been related to social cognitive deficits [72], resulting from a
reduction in dopaminergic neurotransmission [73]. Nevertheless, more research is needed
to identify the exact role of COMT polymorphisms in schizophrenia. Another gene involved
in cognitive deficit in schizophrenia is AKT1, which encodes a serine threonine kinase
activated by dopamine type 2 receptor agonists [74]. It also plays a crucial role in the
neuregulin signaling pathway, and is related with social recognition [75].

Another subset of genes involved in schizophrenia are those related to brain develop-
ment, for example DTNBP1, encoding dysbindin. This protein is involved in hippocampal
formation [76], highlighting its role in cognitive processes critical to schizophrenia [77]. In
recent years, several studies have associated the presence of single-nucleotide polymor-
phisms (SNPs) with cognitive deficit in schizophrenia [78,79]. Another gene related to
neurodevelopment is DISC1, which participates in the acquisition of neuronal phenotypic
features including axonal growth and dendritic spine formation, and in neuronal intracel-
lular transport [80]. It was observed that some variants of the DISC1 gene are associated
with alterations in the expression of genes that participate in brain development, leading
to intellectual disabilities [81].

3. Treatment of Cognitive Deficit in Schizophrenia

The treatment of schizophrenia currently relies on antipsychotics. There are two
different subgroups of antipsychotics: typical and atypical [82]. Typical antipsychotics
such as haloperidol or chlorpromazine are D2 receptor antagonists [83]. They are effective
against positive symptoms, but they are less effective and even ineffective against negative
symptoms and cognitive deficit [83]. Atypical antipsychotics like clozapine, olanzapine
and risperidone block both D2 and 5-HT2A receptors, modulating both glutamatergic and
dopaminergic neurotransmission in prefrontal cortex [84].

Several meta-analyses have reflected that atypical antipsychotics elicited a slight
improvement in some cognitive functions, while none of them were found to have a positive
profile in all cognitive functions [85,86]. In the most recent study, Baldez et al. analyzed
54 randomized double-blinded studies to create a ranking of the effect of antipsychotics
on neuropsychological tests [87]. They found that olanzapine was ranked first in motor
performance and visuoconstruction, amisulpride came first in attention and verbal memory,
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ziprasidone in working memory, sertindole in processing speed and perphenazine in
executive functions, while lurasidone occupied the first position in a composite score. They
also observed that clozapine and typical antipsychotics occupied the last positions [87].

De la Fuente-Revenga et al. reported that chronic treatments with atypical antipsy-
chotics such as clozapine could induce the transcription of the HDAC2 gene, with a
detrimental effect on cognitive functions in cortical neurons [88]. This effect seems to be
mediated by 5-HT2A receptors [89], suggesting that compensatory mechanisms may confer
atypical antipsychotics both positive and negative effects on cognitive function, with a
high variability between individuals. Therefore, because the efficacy of antipsychotics in
treating cognitive deficit is very poor, several strategies have been developed to address
the cognitive symptoms of schizophrenia (Table 1).

Table 1. Summary of the drugs mentioned in the review assayed in clinical trials with their mechanisms of action, the
quality of the evidence and the observed effect.

Mechanism of Action Drug Quality of Evidence Effect Observed Reference

Antioxidant
PUFAs Randomized trial Counteraction of cortical thickness [90]

N-acetylcysteine Randomized double-blind trial Improvement in cognitive speed [91]
Minocycline Randomized double-blind trials Improvement in information processing speed [92,93]

5-HT1A agonism Tandospirone Randomized double-blind trial Improvement in executive
function and verbal memory [94]

5-HT3 antagonism Ondansetron Meta-analysis Slight improvement in
some functions (visual memory) [95]

5-HT3 antagonism + α7
nicotinic agonism Tropisetron Randomized double-blind trial Improvement in memory [96]

5-HT6 antagonism AVN-211 Randomized double-blind trial Contradictory effects on cognitive domains [97,98]

Non-selective GABA
receptor agonists Benzodiazepines Observational study Attention and working memory impairment [99]

GABA prodrug BL-1020

Randomized double-blind trial
(Phase 2) Improvement in a composite score [100]

Randomized double-blind trial
(Phase 2b-3) No benefits [101]

H3 receptor antagonist ABT-288 Randomized double-blind trial
(Phase 2) No benefits [102]

α7 nicotinic receptor agonist

Varenicline Meta-analysis No benefits [103]

Encenicline Randomized double-blind trials
(Phase 3) No benefits [104]

Nelonicline Randomized double-blind trial
(Phase 2b) No benefits [105]

Bradanicline Randomized double-blind trial
(Phase 2) No benefits [106]

M1 and M4 muscarinic
receptors agonist Xanomeline Randomized double-blind trial

(pilot study)
Slight improvement in verbal

learning and memory function [107]

Acetylcholinesterase inhibitor Galantamine Meta-analysis No clear improvement in memory, executive
functioning, attention or reaction time [108]

NMDA receptor antagonist Memantine Systematic review of open
label or double-blind trials No benefits [109]

Inhibitors of
glycine transporters

Bitopertin Randomized double-blind trial No benefits [110]

BI425809 Randomized double-blind trial
(Phase 2) Slight increase in a composite score [111]

Activator of glutamate
metabotropic receptors LY2140023 Randomized double-blind trial No benefit [112]

Allosteric activator
of AMPA receptors

CX-516
Randomized single-blind trial Improvement in attention and memory

(combined with clozapine) [113]

Randomized double-blind trial
(4 patients) No benefit [114]

D1 receptor positive
allosteric modulator (PAM) ASP4345 Randomized double-blind trial

(Phase 2) No benefit [115]
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Table 1. Cont.

Mechanism of Action Drug Quality of Evidence Effect Observed Reference

Dopamine reuptake inhibitor Modafinil Systematic review No benefit [116]

Antidepressants Antidepressants belonging
to various classes Meta-analysis No clear benefits of the combination of

antidepressants and antipsychotics [117]

Phosphodiesterase 4 inhibitor Roflumilast Randomized double-blind trial Verbal memory improvement [118]

Phosphodiesterase
10 inhibitor TAK-063 Randomized double-blind trial

(Phase 2) No benefit [119]

Neuroprotective steroid Dehydroepiandrosterone Randomized double-blind trial Slight improvement in attention and
visual and movement skills [120]

Neuroprotective steroid Dehydroepiandrosterone Randomized double-blind trial No benefit [121]

Estrogen agonist in brain Raloxifene Randomized double-blind trials Improvement in verbal memory
and other cognitive domains [122,123]

Raloxifene Randomized double-blind trial No benefit [124]

Progesterone precursor Pregnenolone Randomized double-blind trial Improvement in memory
and working attention [121]

Randomized double-blind trials No benefit [125,126]

3.1. Antioxidant Compounds

A multitude of drugs with antioxidant effects have been tested. In clinical trials, they
appeared to be effective in alleviating cognitive deficit in schizophrenia, although most
trials included a low number of patients [127].

Some antioxidant compounds have been reported to induce the transcription of
genes encoding neurogenesis-related proteins [128]. Thus, alpha-lipoic acid increases
BDNF expression in animal models of schizophrenia, with an improvement in memory
impairment [41]. In a small clinical trial, it was observed that dietary supplementation
with n-3 polyunsaturated fatty acids (PUFAs) counteracted cortical thickness observed in
schizophrenic patients [90]. Another effect of antioxidant compounds is the enhancement of
the nitrergic activity in the central nervous system [41]. Nitric oxide has been demonstrated
to be effective in activating NMDA receptors in animal models of schizophrenia [129], but
its efficacy has not yet been confirmed in clinical trials [130].

Another antioxidant compound, N-acetylcysteine, has been described as slightly
beneficial for cognitive deficit in schizophrenic patients, improving cognitive speed [91].
This may be due to its role as precursor of glutamate, enhancing glutamatergic transmission
in DLPFC and complementing its antioxidant effect [131,132].

Tetracyclines are a group of antibiotic drugs with an antioxidant effect that have
been suggested to be beneficial for cognitive deficit in schizophrenia [133]. In clinical
trials, minocycline has demonstrated a beneficial effect in alleviating cognitive deficit in
schizophrenia, improving information processing speed [92,93].

In summary, it has been observed that drugs with an antioxidant effect may help to
relieve cognitive deficit in schizophrenia by a combination of neurogenic, neuroprotective
and nitrergic mechanisms, but their role in the pharmacotherapy of schizophrenic patients
has not yet been properly established.

3.2. Modulation of Serotonergic Neurotransmission

As described above, atypical antipsychotic drugs interact with serotonin 5-HT2A
receptors, with both positive and negative effects on cognitive function. The negative
effects of chronic antipsychotic treatments on cognitive function mediated by 5-HT2A
receptors could be avoided employing HDAC2 inhibitors [134].

In addition to the role of 5-HT2A receptors in the treatment of cognitive deficit in
schizophrenic patients, the role of other serotonin receptors has also been studied. Some
atypical antipsychotic drugs, such as quetiapine or aripiprazole, stimulate 5-HT1A recep-
tors [135,136], providing an inhibitory feedback control of serotonin release in several
areas of the brain [137]. This effect is related with an improvement in some cognitive func-
tions such as verbal memory in schizophrenic patients, as seen with the 5-HT1A agonist
tandospirone [138]. Nevertheless, activation of 5-HT1A receptors is also associated with
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hallucinations and nightmares, suggesting that 5-HT1A receptor agonists may exacerbate
positive symptoms of schizophrenia [139].

Antagonists of 5-HT3 receptors, such as the anti-emetic drug ondansetron, were
shown to be mildly effective against cognitive deficits in schizophrenia in clinical trials,
although these trials were conducted with very few patients [95]. Tropisetron, another
5-HT3 receptor antagonist, improved cognition in schizophrenic patients [96]. Tropisetron
is also an agonist of α7 nicotinic acetylcholine receptors, demonstrating that the synergy
between acetylcholine receptor agonism and 5-HT3 receptor antagonism is beneficial for
the treatment of cognitive deficit in schizophrenia [140].

The 5-HT6 receptor is another serotonin receptor involved in cognitive function
(see [141] for a review). It was demonstrated that AVN-492, as an antagonist of 5-HT6
receptors, counteracted cognitive impairment in animal models of schizophrenia [142].
Nevertheless, findings in clinical trials with schizophrenic patients were contradictory.
Only some of them showed a scarce beneficial effect of the 5-HT6 antagonist AVN-211
in cognitive function [97,98]. This may be due to the fact that most of the compounds
assayed as cognitive enhancers were not specific 5-HT6 receptor antagonists, suggesting
the existence of synergistic interactions with other receptors.

The 5-HT7 receptor has also been proposed as a target for novel drugs improving
cognitive enhancement (see [143] for a review). It has been suggested that the activation
of the 5-HT7 receptor reduces neuronal excitability, and it has been proposed that 5-HT7
antagonists could exert a beneficial effect in cognition and memory [144]. In animal models
of schizophrenia, it has been demonstrated that the inhibition of 5-HT7 receptors exerts a
synergistic effect with the inhibition of other receptors such as sigma receptors or 5-HT1
receptors, both by combining them with an atypical antipsychotic or by using a multitarget
strategy [145–147].

Although there is not much information about 5-HT5A receptor function, it has been
demonstrated that its inhibition exerts a procognitive effect in animal models of schizophre-
nia [148,149]. A recent work by Yamazaki et al. demonstrated that this effect is due to the
activation of dopaminergic and GABAergic neurons in the prefrontal cortex as a result of
the inhibition of the serotonin receptor [150].

Some antidepressants are also modulators of serotonergic neurotransmission, as
serotonin reuptake inhibitors. However, recent evidence indicates that their effect may be
related to an enhancement of neuroplasticity [151].

3.3. Regulation of GABAergic Neurotransmission

As described above, there is a reduction in the GABAergic transmission in DLPFC in
schizophrenic patients, leading to a desynchronization of the depolarization of pyramidal
neurons. Nevertheless, benzodiazepines, as non-selective agonists of GABA receptors,
exert a deleterious effect in cognitive function in schizophrenic patients—specifically in
attention and working memory [99]. This may be due to the fact that stimulation of GABA
receptors exerts contradictory actions in neurons. The stimulation of synaptic GABAA
receptors induces a phasic inhibition of the neuron, and the stimulation of extrasynaptic
GABAA receptors induces a tonic inhibition of the neuron [7]. Attempts to develop selective
modulators of GABAA receptors did not yield compounds with a procognitive effect [152].

On the other hand, one GABAB receptor agonist, baclofen, showed an improvement
of cognitive function in an animal model of schizophrenia [153]. However, this result
contradicts those published in other studies [7].

Another strategy to regulate GABAergic neurotransmission is the employment of
GABA prodrugs such as BL-1020, an ester between the atypical antipsychotic perphenazine
and GABA [154]. The use of this prodrug demonstrated a beneficial effect on cognitive
function in animal models of schizophrenia and in phase 2 clinical trials [100,155]. Unfor-
tunately, the results of phase 3 assays were negative [101].
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3.4. Potentiation of Histaminergic Neurotransmission

An increase in the expression of histamine H3 receptors in the prefrontal cortex has
been observed in schizophrenic patients. In fact, it has been observed that H3 receptor
antagonists exerted a procognitive role in preclinical cognitive models [156]. However, in a
phase 2 clinical trial, the H3 receptor antagonist ABT-288 failed to demonstrate any benefit
in comparison to placebo in schizophrenic patients [102]. Recent research has described a
procognitive effect of samelisant, an inverse agonist of H3 receptors, in animal models of
schizophrenia [157]. Nevertheless, more studies are required.

3.5. Potentiation of Cholinergic Neurotransmission

Smoking has long been observed to be more common in schizophrenic patients
than in the general population [158]. It has been proposed that this could be due to
the fact that nicotine improves cognition in schizophrenic patients [159,160]. Indeed,
it has been widely described that α7 nicotinic acetylcholine receptor activators have a
beneficial procognitive effect both in animal models of schizophrenia [161,162] and in
patients, although modulation of nicotinic receptors in humans entails a high risk of
adverse events [163]. The reason for the beneficial effect of α7 nicotinic acetylcholine
receptor activators on cognitive deficit is complex. On the one hand, they enhance theta
activity and synaptic plasticity in hippocampal neurons, potentiating memory [164]. On the
other hand, a nicotinic acetylcholine receptor agonist was shown to enhance the release of
dopamine, glutamate and acetylcholine in the cerebral cortex and in the nucleus accumbens,
which are reduced in schizophrenic patients with cognitive deficit [165].

One of the assayed α7 nicotinic acetylcholine receptor activators is varenicline, which
is widely used for smoking cessation [166]. Although a beneficial effect was observed in
animal models [167,168], there is no evidence from clinical trials of its efficacy in alleviating
cognitive deficit in schizophrenic patients [103]. Other compounds activating α7 nicotinic
acetylcholine receptors such as bradanicline, nelonicline and encenicline did not show a
beneficial effect in clinical trials [104–106].

A positive effect, namely, the alleviation of cognitive deficit in in vivo models of
schizophrenia, was also described resulting from activation of muscarinic acetylcholine
receptors (specifically M1 and M4 receptors) present in the central nervous system [169,170].
Xanomeline, as an M1 and M4 receptor agonist, showed a beneficial effect in cognitive
deficit in a clinical assay with 20 subjects [107]. Recently, it was shown that this drug
induced beneficial effects in neuronal connectivity in animal models of schizophrenia [171].

The potentiation of cholinergic neurotransmission has not only been achieved by the
direct activation of acetylcholine receptors. Another strategy to treat cognitive deficit in
schizophrenia is the use of acetylcholinesterase inhibitors such as galantamine or donepezil,
which prevent the degradation of acetylcholine in the synaptic cleft [172,173]. Galantamine
has been assayed both in animal models of schizophrenia and in clinical trials in combi-
nation with memantine, an antagonist of NMDA glutamate receptors with procognitive
effects [174]. Unfortunately, although the combination of both drugs seemed to be benefi-
cial for cognitive improvement in animal models of schizophrenia [174], no robust benefits
were observed in clinical trials with schizophrenic patients [108,175].

3.6. Potentiation of Glutamatergic Neurotransmission

As described above, schizophrenic patients with cognitive deficit show a reduction
in NMDA receptor stimulation in DLPFC with imbalances in glutamate synthesis. Thus,
several strategies have been proposed to tackle glutamatergic neurotransmission in order
to relieve cognitive deficit in schizophrenic patients. One of them is the direct activation of
NMDA receptors by employing CIQ isomers [(R) and (S)-(3-chlorophenyl) (6,7-dimethoxy-
1-((4-methoxyphe-noxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)meth-anone] [176], but
because most animal models of schizophrenia employ NMDA antagonists to induce
schizophrenia-like symptoms, it is not clear how translational those findings are. In animal
models of schizophrenia it was observed that NMDA receptor antagonists such as meman-
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tine exert a beneficial effect for cognitive deficit [177], but this effect was not observed in
clinical trials [109].

Another strategy to activate NMDA receptors is the enhancement of the function of
co-agonists of the receptor such as glycine or serine. Inhibitors of glycine transporter-1
(GlyT1) have been widely studied as a treatment of cognitive deficit in schizophrenia
because they elevate synaptic glycine levels [178]. However, studies assessing the clinical
efficacy of the GlyT1 inhibitors have been contradictory: bitopertin failed to show a robust
benefit in alleviating cognitive deficit [110], while BI 425809 showed a slight improvement
in cognitive functions [111]. The different effect could be due to the small number of
patients included in clinical trials, to the heterogeneity of clinical scales to assess cognitive
deficit or to the short follow-up time in clinical trials [110,111,179]. On the other hand,
cycloserine has been assayed as an activator of NMDA receptors, but the evidence of a
positive effect on cognitive deficit in schizophrenia is not strong [180].

The activation of glutamate metabotropic receptors has been studied as a novel mech-
anism to improve cognitive deficit in schizophrenia because the activation of metabotropic
receptors reduces the release of glutamate in cortical neurons, which, as exposed above, is
paradoxically augmented in schizophrenia [181]. Results in mice are contradictory because
a clear benefit was observed in some studies, while other studies failed to show a benefit of
activating metabotropic receptors on cognitive deficit [182,183]. This lack of efficacy was
also observed in clinical trials with LY2140023 [112]. Regardless, animal studies suggest
that there are several strategies that appear to improve the effect of activating metabotropic
receptors, such as administering them in adolescence, before the onset of schizophrenia
symptoms [184,185]. Some studies have also shown a synergistic effect between the acti-
vation of glutamate metabotropic receptors and M4 acetylcholine receptors [186]. Shen
et al. described that the activation of M4 receptors enhanced brain neuroplasticity [187],
suggesting that the activation of metabotropic glutamate receptors requires an increase in
neuronal plasticity to exert a beneficial effect on cognitive deficit.

The modulation of AMPA receptors has also been studied as an approach to enhance
cognition in schizophrenic patients because the interplay between NMDA and AMPA
receptors is critical for neuroplasticity [188]. The activation of AMPA receptors participates
in cognitive processes such as learning and memory; however, AMPA agonists tend to
induce AMPA receptor desensitization [189]. To avoid this effect, ampakines (allosteric
potentiators of AMPA receptors) have been proposed to alleviate cognitive deficit, having
been shown to improve cognitive functions in animal models of schizophrenia [190]. In
clinical trials, the ampakine CX-516 has been shown to improve memory and attention
in patients treated with clozapine [113], although it showed no clear beneficial effects in
monotherapy [114].

3.7. Potentiation of Dopaminergic Neurotransmission

As described above, cognitive deficit in schizophrenia is related to a decrease in
dopaminergic neurotransmission in DLPFC. Most dopamine receptors in DLPFC neurons
are D1 receptors, which co-localize in dendritic spines with hyperpolarization-activated
cyclic nucleotide-gated potassium channels (KCNQ1), whose dysfunction seem to be
related to schizophrenia [191]. Because the relationship between dopaminergic neurotrans-
mission and cognition follows an inverted U-shaped curve, both D1 agonists and antago-
nists have been assayed in animal models of schizophrenia as cognitive enhancers [192,193].
As dopaminergic neurotransmission refines the synaptic signals that reach the dendrites,
the effect of dopaminergic drugs depends on the baseline levels of dopamine in the pre-
frontal cortex [194]. In the last few years, there has been a significant effort to develop D1
receptor positive allosteric modulators (PAMs) for cognitive deficit in schizophrenia (for a
review see [195]). In phase 1 clinical trials, D1 receptor PAMs have been shown to be safe
and tolerable [196]. However, one phase 2 clinical trial evaluating the procognitive efficacy
of the D1 receptor PAM ASP4345 was stopped because the primary endpoint of the assay
was not reached [197].
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D3 receptor antagonism has been proposed as a mechanism for novel drugs against
cognitive deficit in schizophrenia. The D3 receptor plays a crucial role in the regulation of
dopamine release. Blockage of the D3 receptor enhances dopaminergic neurotransmission,
with a beneficial effect on cognitive deficit [198]. On the other hand, the D3 receptor interacts
with the nicotinic α7 receptor, boosting neuroplasticity (see [199] for a review). D3 and D2
receptor homology is very high, making it very difficult to develop drugs to selectively
inhibit D3 receptors [200]. However, it has been proposed that the procognitive effects of
several atypical antipsychotics may be due to their effects on D3 receptors (see [201] for
a review).

Another strategy to increase the dopaminergic neurotransmission in DLPFC is the em-
ployment of the dopamine reuptake inhibitor modafinil. Modafinil has long been employed
as a cognitive enhancer in both healthy individuals and in patients with neurodegenerative
diseases and psychiatric pathologies [202]. Although it has been classified as a dopamine
reuptake inhibitor, modafinil also modulates norepinephrine and serotonin transport, en-
hances glutamatergic neurotransmission and blocks GABAergic signaling [203]. It was
suggested that modafinil improved cognitive functions in animal models of schizophre-
nia [204], but a recent systematic review by Ortiz-Orendain et al. concludes that the
evidence for the efficacy of modafinil in alleviating cognitive deficit in schizophrenic
patients is weak [116].

3.8. Antidepressant Drugs

Antidepressant drugs have been tested for the treatment of cognitive deficit in animal
models of schizophrenia. Some of them, such as reboxetine or escitalopram, have been
shown to be beneficial, especially in combination with different atypical antipsychotic
drugs [205–207]. However, a meta-analysis highlighted that there was a high variability
between assays, leading to the conclusion that there were no clinically relevant effects on
cognition in schizophrenic patients [117]. These results take on new meaning in light of the
recent study by Casarotto et al., in which the authors demonstrated that the mechanism of
action of both typical and long-acting antidepressants is to enhance neuronal plasticity by
binding to the TrkB BDNF receptor [151].

3.9. Inhibition of Phosphodiesterases

Phosphodiesterase inhibition is a promising mechanism of action for improving
cognitive function in schizophrenia because cAMP and cGMP are second messengers of
many receptors whose hypofunctions are involved in cognitive deficit in schizophrenia,
such as dopamine or glutamate [208]. Preventing the degradation of cAMP and cGMP
is expected to potentiate central neurotransmitters’ activity. From the eleven members
of the phosphodiesterase family, phosphodiesterases 1, 2, 4, 5, 9, 10 and 11 are widely
expressed in central nervous system (see [209] and [210] for a review). We will focus on
phosphodiesterases 1, 4 and 10, as they are the most studied in schizophrenia-induced
cognitive deficit.

Phosphodiesterase 1 (PDE1) is an enzyme related to oxidative stress that colocalizes
with dopamine receptors [211]. Its inhibition in animal models of schizophrenia appeared
to be useful in alleviating cognitive deficit as an adjuvant of antipsychotic therapies with
anti-inflammatory effect [212,213].

Phosphodiesterase 4 (PDE4) is one of the most widely studied phosphodiesterases in
schizophrenia. It interacts with DISC1 which, as exposed above, is involved in neuroge-
nesis and whose malfunction is related to schizophrenia [214]. Roflumilast, an inhibitor
of phosphodiesterase 4, and has been tested for the alleviation of cognitive deficit in
schizophrenic patients, showing little improvement in either electrophysiological abnor-
malities or cognitive impairments elicited by schizophrenia [118,215]. Studies with more
patients are needed in order to draw meaningful conclusions about the efficacy of roflumi-
last in schizophrenia-induced cognitive deficit.
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Phosphodiesterase 10 (PDE10) has been described as a promising target for the treat-
ment of many neurodegenerative and psychiatric diseases (see [216] for a review). Its
blockage in animal models of schizophrenia using rodents and apes induces a beneficial
effect in cognitive deficit [217,218]. TAK-063, a PDE10 inhibitor, has reached clinical tri-
als, and although it was shown to be safe in phase 1 [219], it did not show a significant
improvement in cognitive abilities in phase 2 studies with schizophrenic patients [119].

3.10. Steroids

Both cortical and sexual hormones are linked to schizophrenia. Chronic activation of
the hypothalamic–pituitary–adrenal (HPA) axis has been suggested to play a role in the
pathogenesis of schizophrenia [220]. As described above, both increased cortisol levels and
blunted cortisol awakening response have been associated with a worse cognitive function-
ing in patients with schizophrenia. However, few assays have been performed to evaluate
the efficacy of drugs counteracting the deleterious effect of cortical hormones on cognitive
deficit in schizophrenic patients. The neuroprotective steroid dehydroepiandrosterone
exerts a clear beneficial effect on cognitive function in animal models of schizophrenia [221],
even though this effect is not always observed in clinical trials with schizophrenic patients,
with only slight increases in attention and movement and visual skills [120,121]. It has
been suggested that its beneficial effect may be achieved only in the early stages of the
disease [222].

The role of sexual hormones, especially estrogens and progesterone, in the patho-
genesis of schizophrenia is better known. Estrogens participate in neuronal development
and regulation and exert a neuroprotective role [223]. It has been described that estrogen
replacement therapy as an adjunctive to antipsychotics may exert a slight beneficial effect
in cognitive functions in some schizophrenic patients [224]. However, estrogen replace-
ment therapy increases the risk of uterine and breast cancer [225]. Raloxifene is a drug
with estrogen-agonistic properties in the brain and estrogen-antagonistic properties in
breast and uterus, reducing the risk of uterine and breast cancer. The effect of raloxifene
in cognitive deficit is inconsistent, as it has been shown to have a beneficial effect in some
trials [122,123], while no benefit was seen in others [124]. These differences could be ex-
plained by the heterogeneity of the patients included in each assay, because the effect of
raloxifene may depend on the severity of schizophrenia and whether the patients are post-
or premenopausal women.

Pregnenolone is a precursor of progesterone and other steroid hormones that has also
been tested as a drug for cognitive impairment in schizophrenic patients due to its beneficial
effect as a neurogenesis enhancer, anti-apoptotic agent, HPA axis modulator, enhancer of
myelination and regulator of GABAergic and glutamatergic neurotransmission [226]. As
with raloxifene, the effects of pregnenolone are inconsistent between different trials, with
a benefit seen in several trials [121], while no benefit of pregnenolone was produced in
others [125,126]. The reason for these differences between trials may be due to different
baseline serum pregnenolone levels. High serum pregnenolone is correlated with lower
improvements in cognitive function.

4. Conclusions and Future Perspectives

Despite the large amount of work done investigating the etiologies and treatments of
cognitive deficit in schizophrenia, little progress has been made. There are several reasons
for this slow development. One of them is the low translationality of the animal models
of schizophrenia. Most rely on giving mice a drug such as MK-801 or scopolamine that
induces schizophrenia-like symptoms. Schizophrenia is more complex than that and, as
explained in the Introduction, neuroanatomical abnormalities, biochemical imbalances
and genetic alterations concur in its etiology. To overcome this drawback, novel models
of schizophrenia must be developed, including new animal models such as genetically
modified mice [227] and in vitro models using immortalized neuronal cells relevant to
schizophrenia [228], which could be helpful for early drug discovery.
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Another reason for the high attrition rate is the holistic complexity of schizophrenia.
Schizophrenia is a syndrome characterized by a series of symptoms and signs, and the
alterations behind them vary between patients. In addition, even the physiological status
of each patient influences these symptoms and signs. Therefore, a more personalized
treatment should be prescribed for schizophrenic patients. The determination of biomark-
ers and the advances in pharmacogenomics could make it possible to identify the most
appropriate treatments for each patient [229].

Lack of adherence to the treatment in patients with schizophrenia also hampers
the discovery of novel efficient drugs for cognitive deficit in schizophrenia because it
introduces biases in the measurement of drug efficacy. To overcome this drawback, a
more personalized therapy with motivational interviews to emphasize the benefits of the
treatment and to identify the problems associated with the therapy could improve patient
adherence to treatment [230].

Several successful treatments used for cognitive deficit in schizophrenia exert their
action by enhancing neuroplasticity. This suggests that the combination of those pharmaco-
logical treatments with non-pharmacological therapies such as cognitive training could
represent an advancement in the treatment of cognitive deficit in schizophrenic patients.
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