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A B S T R A C T   

Glioblastoma (GBM) is the most invasive and deadliest brain cancer in adults. Its inherent heterogeneity has been 
designated as the main cause of treatment failure. Thus, a deeper understanding of the diversity that shapes GBM 
pathobiology is of utmost importance. Single-cell RNA sequencing (scRNA-seq) technologies have begun to 
uncover the hidden composition of complex tumor ecosystems. Herein, a semi-systematic search of reference 
literature databases provided all existing publications using scRNA-seq for the investigation of human GBM. We 
compared and discussed findings from these works to build a more robust and unified knowledge base. All as-
pects ranging from inter-patient heterogeneity to intra-tumoral organization, cancer stem cell diversity, clonal 
mosaicism, and the tumor microenvironment (TME) are comprehensively covered in this report. Tumor 
composition not only differs across patients but also involves a great extent of heterogeneity within itself. Spatial 
and cellular heterogeneity can reveal tumor evolution dynamics. In addition, the discovery of distinct cell 
phenotypes might lead to the development of targeted treatment approaches. In conclusion, scRNA-seq expands 
our knowledge of GBM heterogeneity and helps to unravel putative therapeutic targets.   

1. Background 

Glioblastoma (GBM) is the most frequent and deadly primary 
neoplasm of the central nervous system (CNS) in adults [1]. This tumor 
is characterized by pronounced heterogeneity, high infiltrative power, 
and the presence of treatment-resistant GBM stem cells (GSCs). GSCs are 
thought to stand at the zenith of the tumor-cellular hierarchy and fuel 
tumor growth by generating a diverse differentiated progeny of cancer 
subclones that constitute the bulk of the tumoral mass [2]. Additionally, 
the TME plays a critical role in disease progression and requires further 
investigation [3]. 

An important milestone that paved the way to understanding the 
molecular landscape of GBM was The Cancer Genome Atlas (TCGA) 
project [4,5]; an undertaking that involves the comprehensive genomic 
and transcriptomic analysis of hundreds of tumors. Soon after, 

inter-patient heterogeneity was described in four-tier expression-based 
subtypes, namely, proneural (PN), classical (CL), mesenchymal (MES), 
and neural (NL) [6]. This classification has been demonstrated in other 
studies using bulk RNA sequencing [7,8]. Additionally, intra-tumoral 
heterogeneity was observed [9,10] by performing biopsies from 
non-adjacent localized areas from the same specimen to analyze the 
tumor core and tumor periphery separately. Although this research has 
led us to obtain relevant information regarding GBM biology, the un-
derlying diversity of GBM tumors is misrepresented by bulk methods. 
The challenge posed by this complex disease is that tumor relapse after 
treatment is almost universal and standard-of-care therapies have barely 
evolved over the past few decades [11]. Fortunately, the increased 
resolution of single-cell approaches can be leveraged to unravel key 
features from highly heterogeneous tumors, such as GBM [12]. 
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2. Single-cell RNA sequencing 

Population-based RNA studies measure the average expression level 
of each gene across all cells in a given sample. The relevant biological 
information corresponding to the minority cell compartments is omitted 
in this homogenization [13]. Gene expression insights can be gained at 
the single-cell level using scRNA-seq techniques [14], which are capable 
of overcoming traditional bulk RNA-seq limitations [15] and solve 
experimental questions that require single-cell resolution, such as 
identification of cell subpopulations responsible for treatment recur-
rence, profiling of novel or rare cell subtypes, surveying the TME 
composition, or studying tumor architecture and plasticity [16,17]. 

The existing scRNA-seq protocols function by similar underlying 
principles but differ at specific steps [18]; cell isolation, second cDNA 
strand synthesis, barcoding strategy, multiplexing, and sequencing li-
brary construction might be performed differently depending on the 
scRNA-seq protocol. Here, we present a typical scRNA-seq pipeline for 
GBM, which can be divided into nine steps (Fig. 1).  

a. Sample harvesting 

This step poses a non-trivial challenge in the clinical setting, as 
strong coordination among neurosurgeons and researchers is necessary 
to immediately transport biopsies from GBM patients undergoing sur-
gical resection on ice. The sample manipulation time should be reduced 
to a minimum (within 2–3 hours of resection) to prevent the alteration of 
cellular states of interest and increase confidence in the results.  

b. Single-cell suspension 

Viable, fresh cells are typically required for optimal performance; 
however, some protocols can process cryopreserved or snap-frozen 
samples [19–21]. In this step, tumor dissection is followed by careful 
mechanical breakdown (cutting, chopping), enzymatic dissociation 
(papain, collagenase, and accutase), and several filtering and washing 
steps to remove myelin debris and RBCs. The exact protocol can be 
tailored by the researcher or standardized using available commercial 
kits (e.g., Tumor Dissociation Kit 130-095-929, Miltenyi Biotec). Once a 
single-cell suspension is obtained, precise enrichment is optional by 
cell-sorting the sample, previously stained with a 
fluorophore-conjugated antibody. Enrichment is common in GBM to 

isolate TME populations of interest (e.g., staining with CD45 for immune 
cells, CD3 for T cells, CD31 for endothelial cells). This purification 
process yields better results, as some cell identities are considerably less 
abundant than tumor cells. Additionally, some viability dyes can be used 
to distinguish live cells (e.g., calcein-AM, PI, or 7-AAD) as the presence 
of dead cells, free nucleic acids, and altered transcriptomes have been 
identified as the major sources of undesired technical variation [22].  

c. Cell isolation 

Single-cell suspensions are derived to separate volumes for physical 
single-cell isolation. The so called “plate-based” methods (CEL-seq [23], 
MARS-seq [24], Quartz-seq2 [25], SCRB-seq [26], STRT-seq [27], and 
Smart-seq2 [28]) isolate cells into wells on a plate, while integrated 
microfluidic circuits (IFCs) [29] can isolate cells to microstructures, such 
as hydrodynamic traps (Fluidigm C1 [30]), microdroplets (Drop-seq 
[31], InDrops [32], and Chromium 10X Genomics Single Cell 3 Solution 
[33]), or nanowells (Seq-Well [34], CytoSeq [35], Microwell-seq [36], 
and STRT-seq-2i [37]). The use of microfluidics reduces cost and tech-
nical variability while scaling up to a massive parallelized processing of 
cells. Although not strictly based on single cells, spatial transcriptomics 
are also becoming highly popular in the field [38]. For example, the 
Visium Spatial Gene Expression platform from 10X Genomics enables 
the preservation of sample spatial information by capturing and labeling 
transcripts directly in tissue sections [39].  

d. Cell lysis, mRNA capture, and barcoding 

Every well or droplet contains reagents necessary for cell lysis and 
RNA release. Most techniques take advantage of the presence of poly-
adenylated tails on mature messenger RNAs (mRNAs) to avoid 
contamination from other abundant RNA species, although alternative 
protocols for profiling total RNA or micro RNAs are also available [40, 
41]. It is worth noting that scRNA-seq potency relies on barcoding 
strategies to identify transcripts of parental cells after pooling. At this 
step, 3′ or 5′ tag-based techniques use indexed poly(A) capture RT 
primers for both cellular and individual transcript barcoding by unique 
molecular identifier (UMI) sequences [42]. In contrast, full-length 
methods do not allow early barcoding, and cell identity is later 
assigned during library construction. In terms of mRNA capture effi-
ciency, methods with higher throughput showed decreased sensitivity 
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Fig. 1. General pipeline of a scRNA-seq experiment. After sample harvesting (a), specimen dissociation (b) is required to obtain a single cell suspension. Prior to 
single-cell capture, sample enrichment (*) is an optional step. Individual cells are then physically isolated from each other in microliter volumes (c), for cell lysis and 
mRNA capture through oligo(dT) RT capture primers (d). Most methods apply unique barcoding for each cell, allowing to identify cell-specific derivation for each 
transcript. Transcripts are then reverse transcribed into a first strand of complementary DNA (cDNA), followed by the second strand synthesis to generate a pool of 
double-stranded cDNA (e). The example on the figure depicts TSO chemistry, but other strategies exist. Finally, either PCR or IVT amplification is performed over 
pooled or non-pooled samples (f) for posterior library preparation (g) and high-throughput sequencing (h). Data analysis (i) can be summarized in three general steps, 
i.e., data pre-processing, data processing and downstream analysis. RBC: Red Blood Cell; FACS: Fluorescent Activated Cell Sorting; MACS: Magnetic-Activated Cell 
Sorting; IFC: Integrated Fluidic Circuit; PCR: Polymerase Chain Reaction; IVT: In Vitro Transcription; QC: Quality Control. 
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when compared to plate-based protocols [43].  

e. Reverse transcription 

Captured transcripts must be converted into cDNA molecules for 
amplification and sequencing. Different protocols use distinct methods 
such as homopolymer termination for poly(A)-based second strand 
synthesis [44], template switching oligo (TSO) strategy [45], or a 
combined action of ribonuclease (RNase) H and DNA polymerase (DNA 
pol I) activity [46,47].  

f. Amplification 

Amplification before sequencing is a key step in obtaining sufficient 
amount of cDNA. It can be performed by either PCR or in vitro tran-
scription (IVT). Although the IVT yield is linear and introduces lesser 
amplification bias than PCR, it requires more time and additional steps, 
such as re-converting RNA to cDNA for sequencing [48].  

g. Library preparation 

By fragmenting, size-selecting, and ligating specific adapters to 
amplification products, a cDNA library is built. These steps are required 
because libraries are typically prepared for short-read sequencing. 
Different methodologies perform fragmentation, either enzymatically 
(e.g., Smart-seq2 [28], Drop-seq [31], and Seq-Well [34] use tagmen-
tation), chemically (e.g., MARS-seq uses zinc [24], InDrops [32], and 
CEL-seq [23] use KOAc and MgOAc), or mechanically (e.g., Quartz-seq2 
[25] uses ultrasound). This is followed by the ligation of sequencing 
adapters. Protocols that do not barcode RNA molecules during reverse 
transcription, typically full-length methods, add cell-specific barcodes at 
this step. While each sample leads to one library in RNA-seq, each 
sequencing library in scRNA-seq corresponds to a single cell.  

h. Sequencing 

The samples are multiplexed before sequencing to prevent unwanted 
technical biases through a balanced design [49]. There is a fixed amount 
of sequencing capacity even on high-throughput sequencing machines. 
The capacity of sequencing can be used in different ways: either by 
augmenting the sequencing target size (number of cells) or the 
sequencing depth, which is determined by the number of reads per cell, 
and it increases the sensitivity (number of genes detected per cell) [18].  

i. Data analysis 

High-throughput sequencing technologies generate a massive 
amount of raw material, which requires intense processing to provide 
biological significance. The computational challenges of single-cell data 
have led to the development of specific software and statistical methods 
[50]. However, the fast progress of this modality caused a lack of 
standardization regarding the computational aspect of studies, which 
motivated comprehensive manuscripts on the topic [51,52]. Briefly, 
demultiplexing and UMI deduplication are computed differently 
depending on each scRNA-seq platform. Thus, method-specific tools are 
used to pre-process the data and generate a count expression matrix (for 
example, Cell Ranger [33] for Chromium 10X Genomics data or scPipe 
[53] for CEL-seq2 data). Thereafter, the user can choose 
single-cell-specific computational tools from an extensive list to perform 
isolated tasks [54]. Alternatively, several packages can be applied as 
analysis toolboxes to go through all the steps of the data analysis pipe-
line. Some examples of these packages are Seurat [55,56], Scanpy [57], 
SCell [58], or scater [59]. In general, the processing of raw expression 
matrices consists of quality control (QC), normalization, feature selec-
tion, scaling, and dimensionality reduction. QC is typically based on 
filtering, considering biological and technical metrics to preserve only 

intact live cells for further analysis. Indeed, QC checkpoints at various 
levels of the analysis ensure information reliability and statistical 
robustness, preventing bias that could induce biological misinterpreta-
tion [60]. The result is a clean, statistically processed expression matrix 
that is ready for direct research querying. Finally, downstream analyses, 
such as clustering, cell type annotation, differential expression, or tra-
jectory analysis, aim to extract biological insights from the data. Given 
the cancerous nature of the sample, concrete computational challenges 
and opportunities have been presented and insightfully reviewed by 
others [61]. 

3. Contribution of scRNA-seq to the understanding of GBM 

A broader understanding of the various sources of heterogeneity 
shaping the aggressiveness of GBM tumors will clarify our understand-
ing of previous therapeutic failures and help in improving treatment 
designs. As opposed to what has already been published [62–64], this 
manuscript comprehensively dissects all advances provided exclusively 
by scRNA-seq and delves into the different layers of GBM heterogeneity. 
Of note, a carefully selected set of articles resulting from a specific 
semi-systematic search (Supplementary Material) is provided. Given the 
recent WHO update on brain tumor classification [65], only studies 
featuring human GBM IDH wild-type (IDHwt) samples analyzed by 
scRNA-seq are discussed in this section. These studies are summarized in 
Table 1. 

3.1. Inter-patient heterogeneity 

Unique patient tumor characteristics might be key in developing 
more effective and personalized treatments. By averaging the data of all 
tumor samples, the distinctive features are partially ignored. Patel et al. 
applied single-cell transcriptomics to profile GBM tumors in five patients 
[66]. They found that each specimen contained cells matching all con-
ventional TCGA subtypes, rather than conforming to a homogeneous 
population (Fig. 2.1). This finding advocated for updating from a 4 to 
3-subtype classification with samples weighted by a simplicity score (ss) 
based on their purity for a unique subtype [67]. Furthermore, it was 
observed that samples with a higher proportion of PN cells correlated 
with improved survival [66]. Interestingly, Yu et al. identified a rare 
form of ciliated glioma in one patient, represented as 5% in TCGA, 
characterized by an unreported motile cilium-related phenotype 
(expressing FOXJ1, FAM183A, HYDIN, and DNALI1) [68]. This scenario 
suggests that several rare forms of GBM may be caused by small 
patient-specific subpopulations. 

Different GBM patients harbor miscellaneous genomic aberrations 
despite a shared set of genetic hallmarks (Chr7 amplification or Chr10 
deletion), which makes each tumor unique [66,69]. Patient-specific 
copy number variations (CNVs) have been shown to impact the dose 
effect of gene expression, which results in the fragmented clustering of 
cancerous cells by tumor origin [66,68,70–73]. This is in line with the 
vast genetic heterogeneity described between patients, as tumors might 
be composed of different clones. In agreement with this phenomenon, 
non-cancerous TME cells from different samples tend to cluster together 
to be devoid of CNVs, thus showing increased similarities across patients 
and potentially providing a better therapeutic target [72] (Fig. 2.1). 

However, despite the uniqueness of individual tumors, generic 
expression patterns or meta-signatures can be defined from shared 
cellular backgrounds across patients (and even across different cancer 
types), including a set of stressed/hypoxia and cell cycle-related genes 
[69,73]. On the other hand, context-and disease-specific signatures 
awaken more interest and will be examined in subsequent sections. 

3.2. Intra-tumoral heterogeneity 

3.2.1. Spatial heterogeneity 
Tumor geographical distribution is important for understanding the 
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Table 1 
Semi-systematically selected manuscripts for comprehensive review (ordered by publication date).  

Reference Samples Platform Transcript 
coverage 

Heterogeneity 
addressed 

Molecular level 
of analysis 

Data accession 

IDHwt 
GBM 

IDHmt 
GBM/NOS 
GBM 

Other samples      

Patel et al., 
2014 [66] 

5 Primary 
untreated 

– – SMART-seq Full length Inter-patient; 
Cellular- 
neoplastic 

Genetics and 
transcriptomics 

GSE57872 

Müller et al., 
2016 [79] 

3 Primary – – Smart-seq2/ 
C1 

Full length Inter-patient; 
Cellular- 
neoplastic; 
Tumor evolution 

Genetics and 
transcriptomics 

EGAS00001001900 

Lee et al., 
2017 [74] 

2 Primary 
and 
recurrent 

1 Primary 
IDHmt 

– Smart-seq2/ 
C1 

Full length Spatial; 
Tumor evolution 

Genetics and 
transcriptomics 

EGAS00001001880 

Darmanis 
et al., 2017 
[71] 

3 Primary 1 Primary 
IDH NOS 

– Smart-seq2/ 
FACS 

Full length Inter-patient; 
Spatial; 
Cellular- 
neoplastic; 
Cellular-TME 

Genetics and 
transcriptomics 

GSE84465 

Müller et al., 
2017 [91] 

5 Primary – 1 Astrocytoma 1 
Oligodendroglioma 

Smart-seq2/ 
C1; 
10X 
Chromium 

Full length; 
3′-tag 

Cellular-TME Genetics and 
transcriptomics 

EGAS00001002185, 

Yuan et al., 
2018 [81] 

4 Primary 
2 Recurrent 

1 Primary 
IDHmt 

1 Astrocytoma Microwell- 
Based scRNA- 
seq platform 

3′ tag Cellular- 
neoplastic; 
Cellular-TME 

Transcriptomics GSE103224 

Neftel et al., 
2019 [69] 

20 Primary – 5 Primary Pediatric GBM 3 
Recurrent Pediatric GBM 

Smart-seq2/ 
FACS; 
10X 
Chromium 

Full length; 
3′ tag 

Inter-patient; 
Cellular- 
neoplastic; 
Tumor evolution; 
Plasticity 

Genetics and 
transcriptomics 

GSE131928 

Sankowski 
et al., 2019 
[87] 

4 Primary 6 Glioma 
NOS 

11 Epilepsy 
2 Carcinoma 

mCEL-Seq2 
protocol 

3′ tag Cellular-TME Transcriptomics GSE135437 

Wang et al., 
2019 [110] 

22 Primary 
untreated 

1 Primary 
untreated 
IDHmt 

2 Astrocytoma 
3 Oligodendroglioma 

Smart-seq2/ 
C1; 
10X 
Chromium 

Full length; 
3′ tag 

Cellular- 
neoplastic 

Genetics and 
transcriptomics 

EGAS00001003845 

Bhaduri et al., 
2020 [82] 

9 Primary – 1 Anaplastic astrocytoma 
1 Gliosarcoma 

Smart-seq2/ 
C1; 
10X 
Chromium 

3′ tag Cellular- 
neoplastic 

Genetics and 
transcriptomics 

PRJNA579593; 
SRP132816 

Jacob et al., 
2020 [72] 

3 Primary – – 10X 
Chromium 

3′ tag Inter-patient; 
Cellular- 
neoplastic 

Transcriptomics GSE141946 

Wang et al., 
2020 [105] 

– 3 Primary 
IDH NOS 

– 10X 
Chromium 

3′ tag Cellular- 
neoplastic 

Transcriptomics GSE139448 

Yu et al., 
2020 [68] 

6 Primary 2 Primary 
IDHmt 

3 WHO grade II 1 WHO 
grade III 1 Gliosarcoma 1 
Brain metastasis (NSCLC) 

STRT-seq 5′ tag Inter-patient; 
Spatial; 
Cellular- 
neoplastic; 
Cellular-TME; 
Tumor evolution 

Genetics and 
transcriptomics 

GSE117891; 
HRA000179 

Couturier 
et al., 
2020 [73] 

16 Primary – 4 Human fetuses (13–21 
weeks of gestation) 

10X 
Chromium 

3′ tag Inter-patient; 
Cellular- 
neoplastic; 
Tumor evolution 

Transcriptomics EGAS00001004422 

Zhai et al., 
2020 [98] 

– 7 Primary 
IDH NOS 

– 10X 
Chromium 

3′ tag Cellular- 
neoplastic; 
Cellular-TME 

Transcriptomics CGGA 

Ebert et al., 
2020 [100] 

– 3 Primary 
IDH NOS 

– 10X 
Chromium 

3′ tag Cellular-TME Transcriptomics N/A 

Liu et al., 
2020 [90] 

– 1 Primary 
IDH NOS 

– SCOPE-seq2 – Cellular- 
neoplastic; 
Cellular-TME; 
Tumor evolution 

Transcriptomics GSE151137 

Goswami 
et al., 
2020 [88] 

4 Primary – – 10X 
Chromium 

3′ tag Cellular-TME Transcriptomics PRJNA588461 

Richards et al., 
2021 [83] 

10 Primary 1 Primary 
IDHmt 
4 Primary 
IDH NOS 

– 10X 
Chromium 

3′ tag Cellular- 
neoplastic; 
Tumor evolution 

Genetics and 
transcriptomics 

EGAS00001004656 

(continued on next page) 
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progression, dissemination, and immune infiltration of a tumor. Lee 
et al. analyzed multifocal (from multiple locations) and longitudinal 
(from different time points) biopsies, aiming to characterize the 
spatiotemporal genomic architecture of GBM [74]. Multifocal tumors 
were more genetically diverse than locally adjacent tumors, displaying 
spatial genetic heterogeneity. Importantly, long-term recurrent tumors 
were seeded from distinct clones, rendering some subpopulations more 
prone to relapse than others (Fig. 2.2a). Yu et al. also claimed that a 
single biopsy is insufficient to represent intra-tumoral heterogeneity and 
proved that individual glioma cells resemble subtypes that change 
dramatically between different locations in the same tumor [68]. They 
were able to perform multi-sector biopsies by precision navigation sur-
gery using a 3D-enhanced MRI model. Single-cell and CNV-driven ana-
lyses allowed them to spatially and temporally deconvolute the 
transcriptomic dynamics of GBM initiation, progression, and crosstalk 
with the TME. The number of somatic CNVs increased across different 
tumor regions, thus defining a clear pattern of tumor progression based 
on CNV accumulation [68]. Based on the hypothesis that environmental 
conditions shape transcriptomic states, a large cohort of different age 
groups and anatomic regions of control and GBM patients was spatially 
resolved using the 10X Visium platform [75]. The study revealed that 
local subclonal distribution was not random, with little or no overlap 
among CNV-bearing cells. Interestingly, a spatial overlap of chromo-
some 7 amplification and hypoxia-related signature was observed, and 
enrichment analysis of these cells revealed dysregulation of genes 
related to increased migratory capacity. On the other hand, the highly 
diffuse nature of GBM led researchers to hypothesize that disease 
recurrence, after tumor resection, is driven by the remaining 
long-distance migratory cells. Darmanis et al. separately biopsied the 
tumor core and periphery and performed scRNA-seq [71]. The authors 
confirmed that the presence of TME cells, mostly immune cells, usually 
contributes to a proportion of bulk results. In addition, the inner core of 
the tumor presents more hypoxia- and adhesion-related genes than the 
tumor margin. They also distinguished low percentages of proliferating 
cancer cells, which were more abundant in the tumor core than in the 
infiltrating fraction. This is in agreement with the results of previous 
studies, suggesting that hypoxia promotes GSC expansion via HIF-1α 

expression [76]. Interestingly, neoplastic infiltrating cells from peritu-
moral samples showed a converging mechanism of dissemination, 
summarized in a 22-gene signature, regardless of their parental tumor 
[71]. Lastly, distinct myeloid populations in the tumor core with a 
tumor-supporting role (pro-angiogenic and anti-inflammatory macro-
phages) were replaced by pro-inflammatory microglia in the peritu-
moral space [68,71]. 

These findings suggest that the spatial molecular information of GBM 
might help in understanding tumor initiation, progression, cell pop-
ulations driving recurrence, and TME roles in disease homeostasis. The 
molecular features of long-distance migrating neoplastic cells might 
share vulnerabilities for putative therapeutic targets, as current knowl-
edge is primarily based on tumor core samples. Therefore, the dissem-
ination of subclones resistant to therapies should be considered for 
targeted treatments. Finally, the spatial organization of infiltrating im-
mune cells is of high interest in targeting appropriate cell compartments. 

3.2.2. Cellular heterogeneity 
scRNA-seq cancer research has enormously contributed to deci-

phering the exact cellular composition of tumor specimens [77]. The 
different cell types coexisting within the tumor, along with the molec-
ular diversity in individual cells, conform to a complex ecosystem that 
hampers treatment efficacy. The identification of clinically relevant (e. 
g., drug resistant, aggressively migrating, highly proliferative, immu-
nosuppressive, etc.) subpopulations may act as new biomarkers and 
therapeutic targets. 

3.2.2.1. Cancerous cell fraction. Cells in a scRNA-seq dataset are 
commonly classified as either malignant or normal based on the pres-
ence or absence of CNVs, respectively [78]. However, aneuploidy does 
not completely explain intra-tumoral heterogeneity. Point mutations 
and altered transcriptional programs may largely contribute to the ex-
istence of diverse subpopulations [66]. Through the use of scRNA-seq, it 
was shown that tumor-specific somatic variants, occurring in specific 
neoplastic clusters, produce unique gene expression patterns [71]. In 
accordance with previous studies [66], Müller et al. found multiple 
genetic variants of receptor tyrosine kinases (e.g., EGFR) linked to a 

Table 1 (continued ) 

Reference Samples Platform Transcript 
coverage 

Heterogeneity 
addressed 

Molecular level 
of analysis 

Data accession 

IDHwt 
GBM 

IDHmt 
GBM/NOS 
GBM 

Other samples      

2 Recurrent 
IDH NOS 

Mathewson 
et al., 
2021 [89] 

16 Primary 15 Primary 
IDHmt 

– Smart-seq2; 
10X 
Chromium 

Full length; 
5′ tag 

Cellular-TME Transcriptomics GSE163108; 
DUOS000006 

Ravi et al., 
2021 [[75], 
preprint] 

16 Primary 1 Primary 
IDHmt 

1 Oligodendroglioma 
6 Healthy cortex 

Visium 
Platform 10X 
Genomics 

– Inter-patient; 
Spatial 

Transcriptomics N/A 

Pombo et al., 
2021 [92] 

7 Primary 
4 Recurrent 

– – 10X 
Chromium 

3′ and 5′ tag Cellular-TME Transcriptomics GSE163120, 
EGAS00001004871 

Jain et al., 
2021 
[[103], 
preprint] 

– 1 Primary 
IDH NOS 

– 10X 
Chromium 

3′ tag Cellular-TME Transcriptomics N/A 

Chen et al., 
2021 [93] 

7 Primary 
1 Recurrent 

1 Primary – Microwell- 
Based scRNA- 
seq platform 

3′ tag Cellular-TME Transcriptomics GSE141383 

Shaim et al., 
2021 [99] 

7 Primary – 1 Low-grade 
oligodendroglioma 
2 Diffuse astrocytoma 

10X 
Chromium 

3′ tag Cellular- 
neoplastic; 
Cellular-TME 

Transcriptomics GSE147275 

Xie et al., 
2021 [101] 

4 Primary – – 10X 
Chromium 

3′ tag Inter-patient; 
Spatial; 
Cellular-TME 

Transcriptomics GSE162631 

From PubMed, Scopus and independent literature search (search strategy detailed in Supplementary Material) on September 22, 2021. GBM Glioblastoma IDHwt IDH 
wild-type IDHmt IDH mutant NOS Not Otherwise Specified NSCLC Non Small-Cell Lung Cancer. 
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mosaic pattern of receptor expression [79]. Indeed, they discovered an 
in-frame deletion in the PDGFRA gene as a potential therapeutic target. 
The effect of clonal heterogeneity on gene expression was assessed by 
reconstructing clonal lineages in tumor phylogenies. Mutational profiles 
were found to be associated with distinct transcriptional programs 
during tumor evolution. Specifically, PDGF-driven GBM tumors showed 
a milder phenotype, progressively inducing OPC-like cells by aberrantly 

activating oligodendrogenesis developmental programs. Conversely, 
more aggressive EGFR-driven GBM tumors have been linked to invasive 
transcriptional programs. However, in other single-cell studies, it has 
been reported that EGFR alterations are late-stage events, while PIK3CA 
alterations occur early during tumor evolution [74]. In addition, other 
studies have shown that important therapeutic targets such as immune 
checkpoints PD1 and CTLA ligands are inconsistently expressed in GBM 

Fig. 2. Zooming into the different levels that depict the complexity of GBM by means of single-cell RNA sequencing. (1) Inter-patient heterogeneity is mainly re-
flected by fragmented clustering and subtypes mixture. (2) Intra-tumoral heterogeneity can be studied in terms of (a) spatial distribution, (b) cellular diversity and (c) 
cellular organization. PCA: Principal Component Analysis; GAM: Glioblastoma-Associated Macrophage/Microglia; NPC: Neural Progenitor Cell; OPC: Oligoden-
drocyte Progenitor Cell; AC: Astrocyte; MES: Mesenchymal; RG: Radial Glia; NSC: Neural Stem Cell; GPC: Glial Progenitor Cell; TME: Tumor Microenvironment. 
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cells [66,71], suggesting the existence of alternative inhibitory mecha-
nisms. These results demonstrate that genetic and transcriptional 
intra-tumoral diversity at important therapeutic targets can seriously 
compromise treatment efficacy [80]. 

Conversely, other authors have clearly stated that genetics does not 
explain GBM heterogeneity. Instead, somatic mutations shape the pro-
portion of cellular states within a tumor by favoring one of them [69, 
73]. Neftel et al. performed an elegant computational analysis that 
revealed six meta-signatures of genes converging into four highly 
recurring cellular states across multiple tumors [69]. The authors 
defined astrocyte-like (AC-like), mesenchymal-like (MES-like), oligo-
dendrocyte progenitor-like (OPC-like), and neural progenitor-like 
(NPC-like) cells present in every patient, in combinations of two to 
four states. OPC-like, NPC-like, and AC-like were found to be enriched 
in, but not specific to, tumors comprising PDGFRA, CDK4, and EGFR 
alterations, respectively, whereas MES states were characterized by NF1 
alterations, vast immune infiltration, and hypoxia [69]. These states 
matched TCGA subtypes and are consistent with other studies suggest-
ing that genomic aberrations do not perfectly explain GBM subtypes [5, 
73]. Despite the fact that pioneering work in this field associated GSCs 
with either a quiescent signature [66] or low percentages of prolifer-
ating cells resembling OPCs [71], this has since been revoked. GBM 
states resembling distorted developmental cell types (NPC and OPC) 
harbor higher fractions of neural and oligo-lineage cycling cells and 
form more aggressive tumors than the two other states (AC and MES), 
comprising more differentiated reactive astrocyte cancer cells and 
mesenchymal cancer cells, respectively [69,73]. In addition, Yuan et al. 
observed a strong correlation between the proliferative state of GBM and 
OPC-like populations, suggesting that GSCs were preferentially associ-
ated with proliferation instead of quiescence [81]. Indeed, Bhaduri et al. 
and others [69,81] demonstrated that every putatively transformed cell 
expresses high GSC marker levels, suggesting that all cancer cells in GBM 
display a pluripotent, immature, and plastic state [82] (Fig. 2.2b). In 
another study [83], high transcriptional diversity in the GSC fraction 
was verified. Two core transcriptional programs have been shown to be 
related to the main states observed in GSCs. One program contained cells 
resembling gliogenesis/neural development. The other group of cells 
showed a mesenchymal and inflammatory-related signature. These two 
fractions formed a transcriptional gradient that, together with a second 
axis of variation along differentiation, might underpin inter-GSC het-
erogeneity [83]. These results might explain why fluctuating GSC 
markers have been proposed, but no consensus has been reached [84, 
85]. 

3.2.2.2. TME cell fraction. The interaction between tumor cells and 
non-malignant cells from the microenvironment influences the pro-
gression and outcome of several cancers [86]. However, there is scarce 
information about the cell identities conforming to the TME of GBM. 
Pre-enrichment based on specific cell markers has helped to uncover the 
complexity of non-cancerous cells [87–89]. In brief, normal astrocytes, 
oligodendrocytes, glioma-associated macrophages/microglia (GAM), 
several T cell phenotypes, dendritic cells (DCs), natural killer (NK) cells, 
pericytes, and endothelial cells (ECs) have been unmasked by scRNA-seq 
in the GBM TME [90] (Fig. 2.2b). 

The myeloid compartment accounts for the greatest proportion of 
GBM TME and is the most common query in scRNA-seq because of its 
diversity. Müller et al. defined two types of GAMs based on their 
ontogeny: blood-derived macrophages (GAMB) and brain-resident 
microglia (GAMM) [91]. Consequently, a signature of 66 differentially 
expressed genes between GAMB and GAMM was identified [91]. It was 
shown that GAMB significantly infiltrates the GBM core, upregulates the 
expression of immunosuppressive cytokines, and has an altered meta-
bolism when compared to that of GAMM [91]. This myeloid dual 
ontogeny was also recently noted by Pombo et al. [92], who explored the 
evolution of the GAM compartment across disease stages by sequencing 

both newly diagnosed and recurrent tumors. Tumor-associated micro-
glia in treatment-naïve patients switched toward monocyte-derived 
GAMs in recurrent ones, which were characterized by a more hetero-
geneous immune compartment [92]. According to these results, Gos-
wami et al. identified a unique CD73hi immunotherapy-resistant 
population in GBM, which is more similar to GAMB than to resident 
microglia, and it negatively correlated with survival [88]. By merging 
new and published scRNA-seq data, Chen et al. recently discovered a 
previously unreported pro-tumor myeloid subpopulation of GAMB, 
marked by the expression of MARCO receptors [93]. Higher counts of 
MARCO+ macrophages were observed at the hypoxic tumor core and 
were associated with anti-inflammatory traits. Of note, GBM IDHwt 
samples, but not IDH-mutant (IDHmt) or lower-grade glioma specimens, 
harbored significantly greater amounts of these GAMs, which also 
correlated with poorer prognosis and the MES subtype. Indeed, it has 
been shown that MARCO GAMs are recruited by tumor cells through the 
secretion of a set of factors (e.g., CSF1, TGF-β) [93]. Similarly, the 
crosstalk between myeloid and GBM cells was partially deconvoluted by 
Yu et al. through a ligand/receptor interaction map [68]. The role of 
several actors of the CXCL family was highlighted in the interaction; a 
mechanism of immune recruitment also suggested by others [81,88]. 

Although GAMB are often classified as pro-tumor cells, the yolk sac- 
derived GAMM phenotype does not perfectly resemble homeostatic 
microglia, and their role is still uncertain [94]. Another scRNA-seq study 
showed that GAMM gene signatures substantially differ from microglia 
in healthy brain by upregulating the expression of inflammatory, 
metabolic, and hypoxia-associated molecules and downregulating the 
expression of microglia core genes [87]. In fact, the P2RY12 gene was 
more specific for characterizing microglial GAMs than the commonly 
used microglial marker CX3CR1. Furthermore, three transcriptional 
states were uncovered in the GAM compartment of GBM by lineage 
trajectory analysis [68]. The microglial phenotype turned into polarized 
blood-derived macrophages and converged into M2 macrophages with 
activated expression of angiogenesis-signaling molecules [68]. This 
transitional state potentially explains the fact that most GAMB simulta-
neously co-express canonical markers of M1 and M2 activation pheno-
types [91], dimming the controversy surrounding this topic [95,96]. 

Other immune cells coexist in the GBM environment in fewer 
numbers than myeloid cells [88]. In a comprehensive single-cell study, 
Mathewson et al. depicted the gene expression landscape of 
GBM-infiltrating T cells and identified four major T cell clusters 
composed of cytotoxic T cells, helper T cells, regulatory T cells (Tregs), 
and cycling T cells [89]. By focusing on clonally expanded 
tumor-reactive T cells, they demonstrated a correlation between cyto-
toxicity gene expression and NK cell signature. The inhibitory NK re-
ceptor CD161 was expressed in tumor-infiltrating lymphocytes but 
absent in Tregs or patient-matched peripheral lymphocytes. Interest-
ingly, CLEC2D (CD161 ligand) was primarily expressed by malignant 
and myeloid cells, revealing similarities with the PD-1/PDL-1 system 
[89]. CD161/CLEC2D and other mechanisms render GBM-infiltrating T 
lymphocytes dysfunctional, correlating them with poor prognosis [97]. 
The scRNA-seq study conducted by Zhai et al. revealed an evolutionary 
trajectory of T cells in GBM, indicating functional differences at the 
initial and end stages of disease progression by gradually expressing 
suppressive immune checkpoints [98]. Analogously, Shaim et al. 
demonstrated that GBM-infiltrating NK cells display a reduced cytolytic 
function, marked by inhibitory receptors upregulation and activating 
receptors downregulation when compared with NKs from healthy in-
dividuals [99]. By analyzing scRNA-seq data from seven adult GBM 
tumors, they hypothesized that GSCs specifically alter NK phenotypes to 
evade NK-mediated killing. The authors experimentally demonstrated 
that this mechanism was based on the direct contact of GSCs with 
infiltrating NK cells via the v-integrin/TGF-β axis, which releases the 
immunosuppressive cytokine TGF-β and subsequently activates other 
pathways [99]. 

Despite most studies focusing on the immune composition of the 
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GBM TME, some studies have also examined the heterogeneity of non- 
immune cell types. Ebert et al. [100] identified a putative 
tumor-antigen expressed in ECs, pericytes, and tumor cells, which was 
absent from healthy cells. Fibroblast antigen protein (FAP) appeared to 
be a unique feature of angiogenic tumor blood vessels, correlated with 
GSC markers and poor prognosis. More recently, EC heterogeneity was 
investigated by Xie et al. to elucidate their role in blood-brain barrier 
(BBB) impairment, which commonly causes cerebral edema and 
neurologic damage [101]. Canonical marker-based annotation of CD31+

sorted cells from core and peripheral tumor samples revealed the pres-
ence of vascular, glial/neuronal, and immune cells. Re-clustering over 
ECs revealed five phenotypically distinct groups. Two of them reflected 
exclusive specialization from individual patients. The other three clus-
ters showed anatomical functional differences, with vascular leakage of 
ECs preferentially occurring by transcellular transport (vesicular trans-
cytosis) in the GBM core, whereas in peripheral tumor regions it was 
mediated by BBB transporters [101]. Exploring the role of ECs could 
provide useful knowledge for improving treatment administration and 
responses. 

Another population of interest in the TME of several tumors is 
cancer-associated fibroblasts (CAFs) [102]. Although CAFs have been 
barely studied, CAF-like cells have been recently identified in GBM after 
enriching a patient sample through serial trypsinization [[103], pre-
print]. Single-cell data from the isolated population confirmed the 
identity of CAF-like cells, although non-uniform expression of CAF 
markers suggested the existence of subtypes. Additionally, lineage tra-
jectory analysis indicated that bone marrow-derived mesenchymal stem 
cells (MSCs) are the shared source of pericytes and CAFs in GBM, which 
greatly overlap in transcriptomic profiles. Further experiments demon-
strated a pro-tumoral impact of GBM CAFs over the TME and tumor 
microvasculature, as well as their prevalence in GSC-rich areas (e.g., 
perivascular and subventricular zones). A larger cohort and further 
studies will be needed to support these results and elucidate the extent to 
which GBM patients could benefit from CAF-targeted therapy. Finally, 
although not comprehensively analyzed by scRNA-seq in humans, other 
cell compartments, such as astrocytes, neurons, and oligodendrocytes, 
might play a central role in maintaining GBM homeostasis [104]. 

3.3. Cellular organization and plasticity 

The variety of neural lineages in GBM led researchers to hypothesize 
that tumor organization is governed by the abnormal recapitulation of 
brain developmental programs, as was observed in low-grade glioma 
and other cancer types [70,78,106,107]. To test this hypothesis, dy-
namic analyses helped decrypt cellular hierarchies by ordering 
single-cell transcriptomes on a virtual timeline [108,109]. An in silico 
lineage tracing analysis performed on GSCs described a single axis of 
variation from proliferating PN cells to quiescent MES cells, resembling 
gliogenesis [110]. Accordingly, Richards et al. showed that GSCs were 
distributed across a gradient of transient states defined by two core 
transcriptional programs, one comprising development-related genes 
and the other comprising injury response genes [83]. Similar conclu-
sions were reached by others, who described astrocyte-like cells 
converging to mesenchymal-like cells and OPC/NPC cells branch into 
cycling cells [90]. A recent study has also supported the idea that a 
portion of GBM cells mirror brain development lineages, with the 
transformation to reactive states associated with hypoxia and inflam-
mation underpinning GBM heterogeneity. Interestingly, this reactive 
transformation of GBM cells was found to be age-related [[75], preprint]. 
Furthermore, Yuan et al. examined the structural organization of ma-
lignant cells using force-directed graphs [81]. GBM cells resembling glial 
and neuronal lineages formed ordered, branched structures with close 
similarities to development, whereas mesenchymal transformation was 
associated with the loss of neural signatures and chaotic unstructured 
conformations [81]. 

A different strategy to identify the origin of a tumor cell is to use 

external datasets as reference data. Bhaduri et al. annotated a cell atlas 
of primary GBM tumors based on the adult human cortex and developing 
brain datasets [82]. GBM cells resembling outer radial glia (oRG) phe-
notypes were identified and placed at the apex of the tumor organiza-
tion. Radial glia (RG) are primary progenitors of uncertain presence in 
adulthood, with the potential to differentiate into distinct lineages, 
namely neurons, astrocytes, and oligodendrocytes. These GBM oRG-like 
cells were described to disseminate through the characteristic behavior 
of their developmental counterparts (i.e., mitotic somal translocation) 
[82]. Another study supported this finding by identifying GLAST+

RG-like cells in human GBM tumors. Remarkably, they described both 
cycling and non-cycling RG-like cells, which were driven from dormancy 
into the cell cycle upon IL-1β exposure [105]. In their study, Couturier 
et al. used a fetal single-cell dataset to generate a roadmap for GBM cells 
and confirmed a trilineage hierarchy [73]. Neural, astrocytic, and 
oligodendrocyte cells were derived from a unique population of glial 
progenitor cells (GPCs). In contrast with these findings, other studies 
have shown that malignant astrocytes are derived from GSCs, but they 
do not share an evolutionary relationship with oligodendrocytes [98]. 

Building upon the GSC hierarchical model, it is becoming increas-
ingly accepted that transcriptional plasticity exists among stem-like and 
differentiated GBM cells, which poses another therapeutic challenge 
[111,112]. For example, Neftel et al. demonstrated that a xenotrans-
plant injection of cells enriched in a single GBM state could recapitulate 
all states and proportions in the parental tumor [69]. Thus, previous 
studies suggest that most GBM cells can adopt fluctuating phenotypes 
with flexibility and interconvert between known states [83]. In fact, it 
has been claimed that phenotypic heterogeneity follows a 
non-hierarchical organization, characterized by reversible state transi-
tions induced by driver mutations and microenvironment perturbations 
[113]. For example, several authors have suggested that 
mesenchymal-like cells are induced by microenvironment transcrip-
tional reprogramming, as there is a good correlation with the frequency 
of immune infiltration [69,83]. Importantly, the CSF1-CSF1R axis was 
putatively assigned as a recruitment mechanism of myeloid cells by 
mesenchymal tumor cells [81,93]. Therefore, immune cells might 
secrete molecules that trigger the transition of cancer cells to mesen-
chymal phenotypes. 

All these findings suggest a model in which a pool of GSCs gives rise 
to more lineage-restricted cells with proliferating potential, thus 
resembling development. A neural progenitor signature transits into an 
inflammatory injury response, possibly due to genetic events and 
microenvironmental cues (Fig. 2.2c). However, it seems that a GSC 
plasticity model explains tumor biology better, where GBM resembles a 
dynamic ecosystem governed by reversible state transitions that occur to 
fulfill tumor needs and improve its adaptive capacity. 

4. Clinical significance 

In recent years, cancer therapy programs have slowly shifted from 
traditional radio- and chemotherapy to more personalized approaches 
[114]. Precision medicine builds upon identifying diagnostic, drug-
gable, or prognostic molecular features in tumors, which is a significant 
challenge in GBM treatment due to its diversity. As cancer biomarkers 
are typically only partially expressed in tumors, combinatorial thera-
peutic approaches are highly recommended in these settings. Therefore, 
it can be concluded that scRNA-seq can successfully guide strategies for 
the treatment of GBM. In this report, information provided by scRNA-seq 
analysis is summarized to provide a resource for promoting the devel-
opment of patient-specific medicinal regimens. The potential clinical 
significance of scRNA-seq contributions to GBM pathobiology is sum-
marized in Table 2. Although most findings from these studies are not 
yet clinically applicable, it is expected that further research will set new 
clinical guidelines for the diagnosis, treatment, and prognosis of GBM 
patients to increase their survival and quality of life. 
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5. Conclusion 

GBM is one of the most lethal and aggressive cancers. Its extensive 
heterogeneity renders standard treatments ineffective; hence, a deeper 
understanding of the mechanisms driving its pathogenicity is required. 
scRNA-seq methods, contrary to transcriptome averaging bulk ap-
proaches, can be leveraged to uncover the cellular landscapes of GBM 
and the underlying architecture of this tumor. 

In studies on cancer cells, scRNA-seq data have shown that genetic 
events are not sufficient to explain GBM heterogeneity. Cancer cells span 
a spectrum of stem-like and proliferative phenotypes, resembling GSCs 
with varying degrees of differentiation. Therefore, GBM aggressiveness 
partially resides in a heterogeneous GSC compartment that largely re-
capitulates neurodevelopmental programs, as tumor organization dis-
plays a similar cellular hierarchy. Indeed, most trajectory inference 
studies describe axes of transcriptional variation ranging from 
progenitor-like OPC/NPC phenotypes to inflammatory-related AC/MES 
cells. However, phenotypic transitions occur among GBM cellular states, 
conforming to an evolving target. Therefore, therapies that prevent 
plasticity or skew it toward a single subtype should be considered. 

Conversely, scRNA-seq technologies have been used to perform a 
detailed dissection of GBM micro-environment, which is known to be 
corrupted by the tumor. GAM recruiting or transforming factors, as well 
as tumor-supporting cell population markers, are promising targets for 
designing immunotherapy combination regimens. Novel inhibitory 
systems of natural anti-tumor immune responses could be therapeuti-
cally reversed to improve treatment effectiveness. In summary, non- 
cancerous cell subpopulations have been proposed as promising thera-
peutic targets for GBM immunotherapy. 

Further studies to accurately characterize molecular programming of 
GSCs and TME will pave the way for designing more effective therapies 
to control tumor differentiation and disease progression and to stratify 
patients based on unique features that pose them as candidates to benefit 
from specific treatments. Importantly, the fact that most of this data is 
available for re-analysis exposes previously unreported aspects of GBM 
biology [113,115], which enhances the relevance of the present report, 
where all previously published datasets are covered. 

Notwithstanding the above, the current value of scRNA-seq in clin-
ical and translational medicine still mostly resides in its potential to 
fathom GBM pathobiology. The academic knowledge gathered by these 
studies needs to be experimentally validated before being translated into 
clinical care. On the other hand, the time of maturation, standardization, 
and development still needs further investigation before scRNA-seq can 
be incorporated into clinical practice. The most important aspect that 
needs to be elucidated for the success of scRNA-seq translational process 
is the extent of its usefulness in decision-making and disease monitoring 
in a cost-effective manner. 
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Table 2 
Clinical significance of scRNA-seq contributions to GBM.  

Level scRNA-seq contribution Clinical significance 

Inter-patient Coexistence of GBM subtypes  • Improve prognosis accuracy  
• Upgrade patient segregation to optimize response to treatment 

Discovery of rare GBM subtypes  • Associate clinical information to new molecular information 
Miscellaneous genetic alterations  • Non-cancerous TME cells as better inter-patient targets 

Spatial Genetic diversity of multifocal tumors  • Required characterization of more than one biopsy 
Similarities of GBM infiltrating cells across patients  • Routinely analyze peritumoral biopsies  

• Target GBM infiltrating cells 
GBM subtypes spatially segregated  • Combinatorial therapeutic strategies to target all tumor areas 

Cellular-neoplastic Study of tumor phylogenies  • Target truncal alterations 
Mosaicism at therapeutic targets  • Withdrawal of ineffective treatments to prevent side effects and toxicity 
GSCs associated to proliferation  • Explore the use of metabolic cancer therapy in combination with other regimes 
Novel tumor antigens  • New immunotherapeutic targets 
scRNA-seq in recurrent GBM  • Identify and target drivers of tumor recurrence 

Cellular-TME Characterization of immunosuppressive cell populations  • Target pro-tumoral GAMs 
Immunotherapy resistant GAM subsets  • Design second-line immunotherapy drugs 
GAM recruitment and transformation  • Target GAMB recruitment  

• Reprogramming GAM polarization to increase anti-tumor GAMs 
Novel tumor mechanisms of immune escape  • Reactivate natural immune responses by reverting inhibitory mechanisms 
Pro-tumoral role of CAF-like cells  • Non-immune target for combinatorial therapy.  

• Use of anti-angiogenic therapy to control CAF tumor-promoting role in microvasculature 
proliferation 

Altered transcriptome of ECs  • Modulate drug delivery based on BBB phenotype 
Cellular 

hierarchies 
Identification of cell-of-origin  • Target cells at the apex of tumor organization responsible for fueling tumor growth 
IL-1β driving RG-like cells from dormancy into cycle  • Test the therapeutic effect of blocking IL-1β production in GBM 

Plasticity GBM cells display a pluripotent, immature and plastic 
state  

• Use differentiation therapy towards stem-like cells to arrest tumor growth 

GBM Glioblastoma TME Tumor Microenvironment scRNA-seq single-cell RNA sequencing GAM Glioma-Associated Macrophages/Microglia CAF Cancer-Associated 
Fibroblasts ECs Endothelial Cells BBB Blood Brain Barrier RG Radial Glia. 
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microenvironment in IDH-mutant gliomas by single-cell RNA-seq, Science 355 
(2017), https://doi.org/10.1126/science.aai8478. 

[71] S. Darmanis, S.A. Sloan, D. Croote, M. Mignardi, S. Chernikova, P. Samghababi, 
Y. Zhang, N. Neff, M. Kowarsky, C. Caneda, G. Li, S.D. Chang, I.D. Connolly, Y. Li, 
B.A. Barres, M.H. Gephart, S.R. Quake, Single-cell RNA-seq analysis of infiltrating 
neoplastic cells at the migrating front of human glioblastoma, Cell Rep. 21 (2017) 
1399–1410, https://doi.org/10.1016/j.celrep.2017.10.030. 

[72] F. Jacob, R.D. Salinas, D.Y. Zhang, P.T.T. Nguyen, J.G. Schnoll, S.Z.H. Wong, 
R. Thokala, S. Sheikh, D. Saxena, S. Prokop, D. ao Liu, X. Qian, D. Petrov, 
T. Lucas, H.I. Chen, J.F. Dorsey, K.M. Christian, Z.A. Binder, M. Nasrallah, 
S. Brem, D.M. O’Rourke, G. li Ming, H. Song, A patient-derived glioblastoma 
organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity, 
Cell 180 (2020) 188–204, https://doi.org/10.1016/j.cell.2019.11.036, e22. 

[73] C.P. Couturier, S. Ayyadhury, P.U. Le, J. Nadaf, J. Monlong, G. Riva, R. Allache, 
S. Baig, X. Yan, M. Bourgey, C. Lee, Y.C.D. Wang, V. Wee Yong, M.C. Guiot, 
H. Najafabadi, B. Misic, J. Antel, G. Bourque, J. Ragoussis, K. Petrecca, Single-cell 
RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental 
hierarchy, Nat. Commun. 11 (2020), https://doi.org/10.1038/s41467-020- 
17186-5. 

[74] J.K. Lee, J. Wang, J.K. Sa, E. Ladewig, H.O. Lee, I.H. Lee, H.J. Kang, D. 
S. Rosenbloom, P.G. Camara, Z. Liu, P. Van Nieuwenhuizen, S.W. Jung, S. 
W. Choi, J. Kim, A. Chen, K.T. Kim, S. Shin, Y.J. Seo, J.M. Oh, Y.J. Shin, C.K. Park, 
D.S. Kong, H.J. Seol, A. Blumberg, J. Il Lee, A. Iavarone, W.Y. Park, R. Rabadan, 
D.H. Nam, Spatiotemporal genomic architecture informs precision oncology in 
glioblastoma, Nat. Genet. 49 (2017) 594–599, https://doi.org/10.1038/ng.3806. 

[75] V.M. Ravi, P. Will, J. Kueckelhaus, N. Sun, K. Joseph, H. Salié, J. von Ehr, 
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W. Wucherpfennig, Inhibitory CD161 receptor identified in glioma-infiltrating T 
cells by single-cell analysis, Cell 184 (2021) 1281–1298, https://doi.org/ 
10.1016/j.cell.2021.01.022, e26. 

[90] Z. Liu, J. Yuan, A. Lasorella, A. Iavarone, J.N. Bruce, P. Canoll, P.A. Sims, 
Integrating single-cell RNA-seq and imaging with SCOPE-seq2, Sci. Rep. 10 
(2020) 1–15, https://doi.org/10.1038/s41598-020-76599-w. 

[91] S. Müller, G. Kohanbash, S.J. Liu, B. Alvarado, D. Carrera, A. Bhaduri, P. 
B. Watchmaker, G. Yagnik, E. Di Lullo, M. Malatesta, N.M. Amankulor, A. 
R. Kriegstein, D.A. Lim, M. Aghi, H. Okada, A. Diaz, Single-cell profiling of human 
gliomas reveals macrophage ontogeny as a basis for regional differences in 
macrophage activation in the tumor microenvironment, Genome Biol. 18 (2017), 
https://doi.org/10.1186/s13059-017-1362-4. 

[92] P.A. Ar, S. I, F.M.J. L, A.D.J.K.D. A, L.D.V.K. M, H.H. V, K.H. Ss, B. Fm, V. der, K. 
D.V.S. B, R. S, L.V.M. B, N.V.R.E. V, D.W. O, Y. S, M. G, C.N.B. G, S.F.L. D, V.G. 
JA. D, K. M, Single-cell profiling of myeloid cells in glioblastoma across species 
and disease stage reveals macrophage competition and specialization, Nat. 
Neurosci. 24 (2021) 595–610, https://doi.org/10.1038/S41593-020-00789-Y. 

[93] A.X. Chen, R.D. Gartrell, J. Zhao, P.S. Upadhyayula, W. Zhao, J. Yuan, H. 
E. Minns, A. Dovas, J.N. Bruce, A. Lasorella, A. Iavarone, P. Canoll, P.A. Sims, 
R. Rabadan, Single-cell characterization of macrophages in glioblastoma reveals 
MARCO as a mesenchymal pro-tumor marker, Genome Med. 13:1. 13 (2021) 
(2021) 1–13, https://doi.org/10.1186/S13073-021-00906-X. 

A. Hernández Martínez et al.                                                                                                                                                                                                                

https://doi.org/10.1111/BPA.12832
https://doi.org/10.1126/science.1254257
https://doi.org/10.1126/science.1254257
https://doi.org/10.1016/j.ccell.2017.06.003
https://doi.org/10.1093/nsr/nwaa099
https://doi.org/10.1016/j.cell.2019.06.024
https://doi.org/10.1016/j.cell.2019.06.024
https://doi.org/10.1126/science.aai8478
https://doi.org/10.1016/j.celrep.2017.10.030
https://doi.org/10.1016/j.cell.2019.11.036
https://doi.org/10.1038/s41467-020-17186-5
https://doi.org/10.1038/s41467-020-17186-5
https://doi.org/10.1038/ng.3806
https://doi.org/10.1101/2021.02.16.431475
https://doi.org/10.1038/onc.2009.252
https://doi.org/10.1038/onc.2009.252
https://doi.org/10.18632/oncotarget.17893
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
https://doi.org/10.15252/msb.20166969
https://doi.org/10.15252/msb.20166969
https://doi.org/10.1001/jamaoncol.2020.1024
https://doi.org/10.1001/jamaoncol.2020.1024
https://doi.org/10.1186/s13073-018-0567-9
https://doi.org/10.1186/s13073-018-0567-9
https://doi.org/10.1016/j.stem.2019.11.015
https://doi.org/10.1038/s43018-020-00154-9
https://doi.org/10.1038/s43018-020-00154-9
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.1007/s13311-017-0524-0
https://doi.org/10.1007/s13311-017-0524-0
https://doi.org/10.1186/s40478-019-0803-6
https://doi.org/10.1038/s41593-019-0532-y
https://doi.org/10.1038/s41591-019-0694-x
https://doi.org/10.1038/s41591-019-0694-x
https://doi.org/10.1016/j.cell.2021.01.022
https://doi.org/10.1016/j.cell.2021.01.022
https://doi.org/10.1038/s41598-020-76599-w
https://doi.org/10.1186/s13059-017-1362-4
https://doi.org/10.1038/S41593-020-00789-Y
https://doi.org/10.1186/S13073-021-00906-X


Cancer Letters 527 (2022) 66–79

79

[94] D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and 
macrophages in glioma maintenance and progression, Nat. Neurosci. 19 (2015) 
20–27, https://doi.org/10.1038/nn.4185. 

[95] P.S. Zeiner, C. Preusse, A.E. Blank, C. Zachskorn, P. Baumgarten, L. Caspary, A. 
K. Braczynski, J. Weissenberger, H. Bratzke, S. Reiß, S. Pennartz, R. Winkelmann, 
C. Senft, K.H. Plate, J. Wischhusen, W. Stenzel, P.N. Harter, M. Mittelbronn, MIF 
receptor CD74 is restricted to microglia/macrophages, associated with a M1- 
polarized immune milieu and prolonged patient survival in gliomas, Brain Pathol. 
25 (2015) 491–504, https://doi.org/10.1111/bpa.12194. 

[96] X. Feng, F. Szulzewsky, A. Yerevanian, Z. Chen, D. Heinzmann, R.D. Rasmussen, 
V. Alvarez-Garcia, Y. Kim, B. Wang, I. Tamagno, H. Zhou, X. Li, H. Kettenmann, 
R.M. Ransohoff, D. Hambardzumyan, Loss of CX3CR1 increases accumulation of 
inflammatory monocytes and promotes gliomagenesis, Oncotarget 6 (2015) 
15077–15094, https://doi.org/10.18632/oncotarget.3730. 

[97] D. Strepkos, M. Markouli, A. Klonou, C. Piperi, A.G. Papavassiliou, Insights in the 
immunobiology of glioblastoma, J. Mol. Med. 98 (2020), https://doi.org/ 
10.1007/s00109-019-01835-4. 

[98] Y. Zhai, G. Li, R. Li, Y. Chang, Y. Feng, D. Wang, F. Wu, W. Zhang, Single-cell 
RNA-sequencing shift in the interaction pattern between glioma stem cells and 
immune cells during tumorigenesis, Front. Immunol. 11 (2020), https://doi.org/ 
10.3389/fimmu.2020.581209. 

[99] H. S, M. S, .R. B, .M. D, J. G, Z. Db, W.F.H.Y. U N, K. G, Q.D.J. M, A.K.L.N. A, A. S, 
V. M, M. M, L. S, J.W.J. L, N.W. F, E.E.E.L. G, M. K, C. K, L. L, G. O, P.P. B, Y. S, 
G. Al, C.M. J, M. B, N.-C. Ak, E. L, J.I.N. Y, F.L. M, Y. L, J. H, G. D, D.Y.D. M, S.E. 
M. M, C. Re, K.L.F.F. C, S. Ej, H. Ab, K. R, Targeting the αv integrin/TGF-β axis 
improves natural killer cell function against glioblastoma stem cells, J. Clin. 
Invest. 131 (2021), https://doi.org/10.1172/JCI142116. 

[100] L.M. Ebert, W. Yu, T. Gargett, J. Toubia, P.M. Kollis, M.N. Tea, B.W. Ebert, 
C. Bardy, M. van den Hurk, C.S. Bonder, J. Manavis, K.S. Ensbey, M. Oksdath 
Mansilla, K.G. Scheer, S.L. Perrin, R.J. Ormsby, S. Poonnoose, B. Koszyca, S. 
M. Pitson, B.W. Day, G.A. Gomez, M.P. Brown, Endothelial, pericyte and tumor 
cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an 
excellent target for immunotherapy, Clin. Transl. Immunol. 9 (2020), https://doi. 
org/10.1002/cti2.1191. 

[101] Y. Xie, L. He, R. Lugano, Y. Zhang, H. Cao, Q. He, M. Chao, B. Liu, Q. Cao, 
J. Wang, Y. Jiao, Y. Hu, L. Han, Y. Zhang, H. Huang, L. Uhrbom, C. Betsholtz, 
L. Wang, A. Dimberg, L. Zhang, Key molecular alterations in endothelial cells in 
human glioblastoma uncovered through single-cell RNA sequencing, JCI Insight 6 
(2021), https://doi.org/10.1172/JCI.INSIGHT.150861. 

[102] E. D’Arcangelo, N.C. Wu, J.L. Cadavid, A.P. McGuigan, The life cycle of cancer- 
associated fibroblasts within the tumour stroma and its importance in disease 
outcome, Br. J. Cancer 122:7. 122 (2020) (2020) 931–942, https://doi.org/ 
10.1038/s41416-019-0705-1. 

[103] S. Jain, J.W. Rick, ‡Rushikesh Joshi, A. Beniwal, J. Spatz, A. Chih, Chieh Chang, 
A.T. Nguyen, S. Sudhir, A. Chandra, A. 4 Haddad, H. Wadhwa, S.S. Shah, S. Choi, 
J.L. Hayes, L. Wang, G. Yagnik, J.F. Costello, A. Diaz, M.K Aghi, N. Surgery, 
Identification of cancer-associated fibroblasts in glioblastoma and defining their 
pro-tumoral effects, BioRxiv (2021), https://doi.org/10.1101/ 
2021.05.08.443250, 2021.05.08.443250. 

[104] D. Henrik Heiland, V.M. Ravi, S.P. Behringer, J.H. Frenking, J. Wurm, K. Joseph, 
N.W.C. Garrelfs, J. Strähle, S. Heynckes, J. Grauvogel, P. Franco, I. Mader, 
M. Schneider, A.-L. Potthoff, D. Delev, U.G. Hofmann, C. Fung, J. Beck, 
R. Sankowski, M. Prinz, O. Schnell, Tumor-associated reactive astrocytes aid the 
evolution of immunosuppressive environment in glioblastoma, Nat. Commun. 10: 
1. 10 (2019) (2019) 1–12, https://doi.org/10.1038/s41467-019-10493-6. 

[105] R. Wang, R. Sharma, X. Shen, A.M. Laughney, K. Funato, P.J. Clark, 
M. Shpokayte, P. Morgenstern, M. Navare, Y. Xu, S. Harbi, I. Masilionis, 

G. Nanjangud, Y. Yang, G. Duran-Rehbein, M. Hemberg, D. Pe’er, V. Tabar, Adult 
human glioblastomas harbor radial glia-like cells, Stem Cell Rep. 14 (2020) 
338–350, https://doi.org/10.1016/j.stemcr.2020.01.007. 

[106] J.A. Ramilowski, T. Goldberg, J. Harshbarger, E. Kloppman, M. Lizio, V. 
P. Satagopam, M. Itoh, H. Kawaji, P. Carninci, B. Rost, A.R.R. Forrest, A draft 
network of ligand-receptor-mediated multicellular signalling in human, Nat. 
Commun. 6 (2015), https://doi.org/10.1038/ncomms8866. 

[107] M.D. Young, T.J. Mitchell, F.A. Vieira Braga, M.G.B. Tran, B.J. Stewart, J. 
R. Ferdinand, G. Collord, R.A. Botting, D.M. Popescu, K.W. Loudon, R. Vento- 
Tormo, E. Stephenson, A. Cagan, S.J. Farndon, M.D.C. Velasco-Herrera, C. Guzzo, 
N. Richoz, L. Mamanova, T. Aho, J.N. Armitage, A.C.P. Riddick, I. Mushtaq, 
S. Farrell, D. Rampling, J. Nicholson, A. Filby, J. Burge, S. Lisgo, P.H. Maxwell, 
S. Lindsay, A.Y. Warren, G.D. Stewart, N. Sebire, N. Coleman, M. Haniffa, S. 
A. Teichmann, M. Clatworthy, S. Behjati, Single-cell transcriptomes from human 
kidneys reveal the cellular identity of renal tumors, Science 361 (2018) 594–599, 
https://doi.org/10.1126/science.aat1699. 

[108] P. Olivares-Chauvet, J.P. Junker, Inclusion of temporal information in single cell 
transcriptomics, Int. J. Biochem. Cell Biol. 122 (2020), https://doi.org/10.1016/ 
j.biocel.2020.105745. 

[109] G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, 
K. Lidschreiber, M.E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L.E. Borm, Z. Liu, 
D. van Bruggen, J. Guo, X. He, R. Barker, E. Sundström, G. Castelo-Branco, 
P. Cramer, I. Adameyko, S. Linnarsson, P.V. Kharchenko, RNA velocity of single 
cells, Nature 560 (2018) 494–498, https://doi.org/10.1038/s41586-018-0414-6. 

[110] L. Wang, H. Babikir, S. Müller, G. Yagnik, K. Shamardani, F. Catalan, 
G. Kohanbash, B. Alvarado, E. Di Lullo, A. Kriegstein, S. Shah, H. Wadhwa, S. 
M. Chang, J.J. Phillips, M.K. Aghi, A.A. Diaz, The phenotypes of proliferating 
glioblastoma cells reside on a single axis of variation, Cancer Discov. 9 (2019) 
1708–1719, https://doi.org/10.1158/2159-8290.CD-19-0329. 

[111] J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D.I.S. Rosenbloom, S. Zairis, F. Abate, 
Z. Liu, O. Elliott, Y.-J. Shin, J.-K. Lee, I.-H. Lee, W.-Y. Park, M. Eoli, A. 
J. Blumberg, A. Lasorella, D.-H. Nam, G. Finocchiaro, A. Iavarone, R. Rabadan, 
Clonal evolution of glioblastoma under therapy, Nat. Genet. 48:7. 48 (2016) 
(2016) 768–776, https://doi.org/10.1038/ng.3590. 

[112] G. Liu, X. Yuan, Z. Zeng, P. Tunici, H. Ng, I.R. Abdulkadir, L. Lu, D. Irvin, K. 
L. Black, J.S. Yu, Analysis of gene expression and chemoresistance of CD133+
cancer stem cells in glioblastoma, Mol. Cancer 5:1. 5 (2006) (2006) 1–12, https:// 
doi.org/10.1186/1476-4598-5-67. 

[113] A. Dirkse, A. Golebiewska, T. Buder, P.V. Nazarov, A. Muller, S. Poovathingal, N. 
H.C. Brons, S. Leite, N. Sauvageot, D. Sarkisjan, M. Seyfrid, S. Fritah, D. Stieber, 
A. Michelucci, F. Hertel, C. Herold-Mende, F. Azuaje, A. Skupin, R. Bjerkvig, 
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