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ABSTRACT 

This paper deals with the relationship between the CO2 emissions and the global 

temperatures across the various pandemic episodes that have been taken place in the last 

100 years. To carry out the analysis, first we conducted unit root tests finding evidence 

of nonstationary I(1) behavior, that means that a shift in time causes a change in the shape 

of distribution. However, due to the low statistical power of unit root tests, we also used 

a methodology based on long memory and fractional integration. Our results indicate that 

the emissions display very heterogeneous behaviour in relation with the degree of 

persistence across pandemics. The temperatures are more homogeneous, finding values 

for the orders of integration of the series smaller than 1 in all cases, and thus showing 

mean reverting behaviour. 
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1.  Introduction 

Over the last 100 years the temperature on the Earth's surface has been rising significantly 

(see Nicholls et al., 1996; Jones and Wigley, 2010; and Folland et al., 2018; among others) 

caused by the effect of the burning and emissions of fossil fuels, industrialization and 

greenhouse gas concentration in the atmosphere (Anderegg et al., 2010; Beckage et al., 

2018, etc.). Nevertheless, it is important to consider other factors such as solar irradiance, 

which are innate in the climate system, and which also affect this situation. According to 

Zickfeld et al. (2012), McMillan and Wohar (2013) and Zickfeld et al. (2016), the 

temperature and the concentration of carbon dioxide in the atmosphere exhibit a close 

correspondence. Also, National Oceanic and Atmospheric Administration (NOAA) and 

authors such as Laat and Maurellis (2004), Hansen et al. (2010), Cahill et al. (2015) and 

Sanz-Pérez et al. (2016) support the hypothesis that the carbon dioxide concentration and 

temperatures exhibit the same behavior and move in a very similar way. 

In recent times we have seen that an infectious disease named SARS-CoV-2, of 

the Coronaviridae family and which caused the COVID-19 disease, was identified in 

Wuhan City, China, in December 2019 (see Hui et al., 2020 and World Health 

Organization1) causing an unprecedented cessation of human activities and affecting 

global energy use and CO2 emissions.  

The confinement imposed on the population as a sanitary measure has brought 

about drastic changes in energy use with an impact on CO2 emissions. The OECD report 

(2020) indicates that the virus will cause a negative supply shock to the world economy, 

by forcing factories to shut down and disrupting global supply chains. This has resulted 

in a decrease of 5.8% in global fossil CO2 emissions during the first quarter of 2020 (see 

Liu et al., 2020). According to Le Quéré et al. (2020) and their sensitivity tests, the 

 
1 https://www.who.int/news-room/q-a-detail/q-a-coronaviruses 
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decrease in annual fossil CO2 emissions from the severe and forced confinement of world 

populations has been between –4.2% (if pandemic restrictions are lifted by mid-June) to 

–7.5% (if some restrictions remain worldwide until the end of 2020). According to some 

researchers, these rates of decrease are similar to those which are necessary year after 

year over the next few decades to limit climate change and prevent warming of 1.5 ºC. 

Doing an extensive review of the bibliography, most of the literature tends to focus 

on studies based on temperatures and CO2, separately. On the one hand, researchers have 

focused their efforts to study global temperatures using stochastic processes and trends 

(see see, e.g., Bloomfield, 1992; Bloomfield and Nychka, 1992; Galbraith and Green, 

1992; Woodward and Gray, 1993, 1995; Koenker and Schorfheide, 1994; Zhang and 

Basher, 1999; Harvey and Mills, 2001; Fomby and Vogelsang, 2003; Gil-Alana, 2003, 

2005, 2008a,b; Vogelsang and Franses, 2005; Mills, 2006, 2010; Gay-Garcia et al., 2009; 

Hendry and Pretis, 2013; Kaufmann et al., 2006, Kaufmann et al., 2010, 2013; Estrada et 

al., 2013; Chang et al., 2016, etc.). On the other hand, emissions have also been studied 

by many authors: Sun and Wang (1996); Slottje et al. (2001); Alby (2006); Ezcurra 

(2007); Chang and Lee (2008); Romero-Avila (2008); Lee et al. (2008); Lee and Chang 

(2009); Nourry (2009); Panopoulou and Pantelidis (2009); Christidou et al. (2013); 

Yavuz and Yilanci (2013); Ahmed et al. (2016); Tiwari et al. (2016); Gil-Alana and 

Solarin (2018); Gil-Alana and Trani (2018); among others. Finally, other authors such as 

McMillian and Wohar (2013), Zhang et al. (2019), Ying et al. (2020) and Gil-Alana and 

Monge (2020) have taken into consideration the two variables together using various 

methodologies such as unit root tests and autorregression models (McMillian and Woha, 

2013), multilayer and multivariable network methods (Zhang et al., 2019), multilayer 

climate network approach (Ying et al., 2020) and fractional integration (Gil-Alana and 

Monge, 2020). 
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Our main objective in this research paper is to conduct a serious statistical analysis 

about the statistical properties of various time series dealing with global temperatures and 

global CO2 emissions. We use techniques based on long memory and fractional 

integration that allow the number of differences to be taken in the series to render them 

stationary be fractional numbers. More in particular, we use fractionally integrated 

AutoRegressive Moving Average ARMA (ARFIMA) models, and thus allowing for a 

fractional degree of differentiation in the level of the series of global annual temperatures 

(land temperatures, land and ocean temperatures and Northern and Southern hemisphere 

temperatures) as well as annual global CO2 emissions from 1880 to 2014, taking into 

consideration the eight large pandemic events around the world, prior to the present one 

caused by COVID-19. 

The motivation that is behind this work is that previous studies that have 

investigated the nonstationarity/stationarity of the series under investigation only have 

considered integer degrees of differentiation, i.e., 0 for stationary series, and 1 for 

nonstationary ones, not considering cases where the degree of differentiation may be a 

fractional value between 0 and 1. In fact, many recent studies have shown that many 

climatological and CO2 emissions-related time series display a long memory pattern, 

implying different results than those obtained based on classical analysis and that only 

used integer degrees of differentiation. (See, e.g., Barassi et al., 2010; Belbute and 

Pereira, 2017; Gil-Alana and Trani, 2019 for papers dealing with CO2 emissions and 

Vera-Valdes, 2020; Mangat, M. E. Reschenhofer, 2020; Gil-Alana and Monge, 2020; 

Awe and Gil-Alana, 2021 and others for papers with temperature data). 

The paper is organized as follows: Section 2 briefly describes the techniques used 

in the paper, while Section 3 presents the dataset and Section 4 contains the main 

empirical results. Finally, Section 5 concludes the paper. 
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2. Methodology 

2.1. Unit roots methods 

There exist many different ways of testing for unit-roots. The most common ones are 

those of Fuller (1976) and Dickey and Fuller (1979), the ADF tests. They are 

asymptotically optimal when the data are stationary. Other more updated unit root 

methods are those proposed in Phillips and Perron (PP, 1988), Kwiatkowski et al. (KPSS, 

1996), Elliot et al. (ERS, 1996), Ng and Perron (NP, 2001), etc. 

 

2.2. ARFIMA (p, d, q) model 

To carry out this research we employ long memory methods based on fractional 

integration where the number of differences required to render a series I(0) stationary is 

a fractional value. 

Following a mathematical notation, given a time series 𝑥𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1, 2, …, we 

say it is integrated of order d (and denoted as 𝑥𝑡 ≈ 𝐼(𝑑)) if: 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡 ,        𝑡 = 1, 2, …,                          (1) 

where 𝑑 can be any real value, 𝐿 is the lag-operator (𝐿𝑥𝑡 = 𝑥𝑡−1) and 𝑢𝑡 is I(0), defined 

as a covariance stationary process with a spectral density function that is positive and 

finite at the zero frequency. Thus, 𝑢𝑡 may display some type of time dependence of the 

weak form, i.e., the type of an invertible and stationary Autoregressive Moving Average 

(ARMA) form, i.e., 

𝜙(𝐿) 𝑢𝑡  = 𝜃(𝐿) 𝜀𝑡,        𝑡 = 1, 2, …,                          (2) 

where ϕ(L) refers to the AR polynomial, θ(L) to the MA one, and εt is a white noise 

process. In such a case, if 𝑢𝑡 is ARMA (p, q), xt is said to be fractionally integrated 

ARMA, i.e. ARFIMA (p, d, q). 
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Depending on the value of the differencing parameter d, several specifications 

based on (1) can be observed: the process would be short memory or I(0) when 𝑑 = 0 in 

(1). This occurs because 𝑥𝑡 = 𝑢𝑡. The high degree of association between observations 

which are far distant in time receives the name of long memory and occurs when 𝑑 > 0. 

Within this last assumption, the process is still covariance stationary if 𝑑 < 0.5 with the 

autocorrelations decaying hyperbolically slowly. 

The reading that we can make of the results obtained from the fractional d is as 

follows: we consider a process of reversion which means that the shocks disappear in the 

long run when d is smaller than 1, and the lower the value of d is, the faster the reversion 

process is. In contrast to the above, the shocks are expected to be permanent when 𝑑 ≥ 1. 

Although there are several procedures to estimate the degree of differentiation d 

(see Geweke and Porter-Hudak, 1983; Phillips, 1999, 2007; Sowell, 1992; Robinson, 

1995; Beran, 1995; etc.), we base our results on the maximum likelihood procedure (see 

Sowell, 1992) and we use the Akaike information criterion (AIC, Akaike, 1973) and the 

Bayesian information criterion (BIC; Akaike, 1979) to select the right ARFIMA model. 

 

3.  Data 

We use global annual temperature anomalies using data from meteorological stations; 

global annual temperature anomalies computed from land and ocean; and global annual 

temperature anomalies for the northern and southern hemispheres computed using land 

and ocean data2 and we also use annual data from the Carbon Dioxide Information 

Analysis Center (CDIAC) of the global CO2 emissions originating from fossil fuel 

burning3 to analyze the behavior of these variables in the long term during the periods of 

pandemics for the time period from 1880 to 2009. 

 
2 https://cdiac.ess-dive.lbl.gov/trends/temp/hansen/data.html. 
3 https://cdiac.ess-dive.lbl.gov/trends/emis/tre_glob_2014.html. 
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Following the research done by Jordà et al. (2020) the dates that we have used for 

our analysis are collected in the following table4: 

 

 

 

 

 

 

 

 

 

Figure 1 plots the original data of the global fossil fuel CO2 emissions and the four 

annual anomalies in the temperature series mentioned above indicating the pandemic 

periods. Although there is a constant increase in the trend across the sample, in periods 

of a pandemic it is observed that the temperatures stabilize/decrease with respect to the 

trend. 

 

Figure 1. Pandemic episodes, global fossil-fuel C02 emissions and annual anomaly in temperatures. 

 
4 To collect the dataset of each subsample, we have used nine years before and nine years after to analyze the cycle. 

Event Start End 

Global Flu Pandemic 1889 1890 

Sixth Cholera Pandemic 1899 1923 

Encephalitis Lethargica Pandemic 1915 1926 

Spanish Flu 1918 1920 

Asian Flu 1957 1958 

Hong Kong Flu 1968 1969 

SARS 2002 2004 

H1N1 Pandemic 2009 2009 
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4.  Results 

We start the analysis by performing the three standard unit root tests outlined in Section 

2. We select the Augmented Dickey-Fuller test (ADF) to examine the statistical properties 

of the original series and its differences to obtain robust results. 

Table 1 displays the results, which suggest that the original data are nonstationary 

I(1) and the first differences are stationary I(0). 

 

Augmented Dickey-Fuller Test 

 (i) (ii) (iii) 

1. Global Flu Pandemic 

CO2 Emissions 
3.026 

(0.00803)** 

1.549 

(0.142) 

-0.648 

(0.528) 

Land Temp 
-0.637 

(0.533) 

-2.487 

(0.00251)* 

-2.714 

(0.0168)* 

Land Oc Temp 
-0.508 

(0.618) 

-2.844 

(0.0123)* 

-2.697 

(0.0174)* 

North Land Oc Temp 
-0.636 

(0.534) 

-2.439 

(0.0276)* 

-2.815 

(0.0138)* 

South Land Oc Temp 
-0.529 

(0.604) 

-2.622 

(0.0192)* 

-2.481 

(0.0264)* 

2. Sixth Cholera Pandemic 

CO2 Emissions 
0.783 

(0.438) 

-1.645 

(0.1083) 

-0.957 

(0.345) 

Land Temp 
-1.760 

(0.0863) 

-3.345 

(0.00186)** 

-4.268 

(0.000132)*** 

Land Oc Temp 
-1.162 

(0.252) 

-3.441 

(0.00142)** 

-3.467 

(0.00135)** 

North Land Oc Temp 
-1.424 

(0.162) 

-2.604 

(0.0131)* 

-3.082 

(0.00387)** 

South Land Oc Temp 
0.862 

(0.394) 

-3.231 

(0.00255)** 

-3.474 

(0.00132)** 

3. Encephalitis Lethargica Pandemic 

CO2 Emissions 
0.493 

(0.626) 

-2.002 

(0.0562) 

-2.841 

(0.00902)** 

Land Temp 
-1.589 

(0.124) 

-2.984 

(0.00628)** 

-3.969 

(0.00057)*** 

Land Oc Temp 
-1.223 

(0.232) 

-2.660 

(0.0134)* 

-4.187 

(0.000328)*** 

North Land Oc Temp 
-1.552 

(0.133) 

-2.008 

(0.0556) 

-4.322 

(0.000233)*** 

South Land Oc Temp 
-0.741 

(0.465) 

-2.937 

(0.00702)** 

-2.894 

(0.00797)** 

4. Spanish Flu 

CO2 Emissions 
1.326 

(0.202) 

-0.458 

(0.653) 

-1.648 

(0.120) 

Land Temp -1.057 -3.018 -3.235 
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(0.305) (0.00816)** (0.00555)** 

Land Oc Temp 
-0.979 

(0.341) 

-2.914 

(0.0102)* 

-2.868 

(0.0117)* 

North Land Oc Temp 
-1.270 

(0.221) 

-2.276 

(0.0369)* 

-3.179 

(0.00623)** 

South Land Oc Temp 
-0.722 

(0.480) 

-2.501 

(0.0236)* 

-2.407 

(0.0294)* 

5. Asian Flu 

CO2 Emissions 
4.239 

(0.000625)*** 

0.499 

(0.625) 

-1.432 

(0.174) 

Land Temp 
-2.223 

(0.141945)* 

-2.666 

(0.0176)* 

-2.589 

(0.0214)* 

Land Oc Temp 
-2.555 

(0.0212)* 

-3.015 

(0.00871)** 

-2.976 

(0.010)* 

North Land Oc Temp 
-3.189 

(0.00571)** 

-3.133 

(0.00684)** 

-3.027 

(0.00905)** 

South Land Oc Temp 
-1.468 

(0.162) 

-2.571 

(0.0213)* 

-2.692 

(0.0175)* 

6. Hong Kong Flu 

CO2 Emissions 
2.524 

(0.0226)* 

-0.115 

(0.910) 

-2.636 

(0.0196)* 

Land Temp 
-2.402 

(0.0288)* 

-2.310 

(0.0355)* 

-2.572 

(0.0222)* 

Land Oc Temp 
-2.908 

(0.0103)* 

-2.830 

(0.0127)* 

-2.910 

(0.0114)* 

North Land Oc Temp 
-2.433 

(0.0271)* 

-2.581 

(0.0209)* 

-2.593 

(0.0213)* 

South Land Oc Temp 
-1.660 

(0.116) 

-1.605 

(0.129) 

-2.780 

(0.0148)* 

7. SARS Pandemic 

CO2 Emissions 
2.901 

(0.00993)** 

0.710 

(0.488) 

-1.914 

(0.0749) 

Land Temp 
0.543 

(0.594) 

-2.822 

(0.0123)* 

-3.817 

(0.001683)** 

Land Oc Temp 
0.514 

(0.614) 

-2.545 

(0.0216)* 

-3.887 

(0.00146)** 

North Land Oc Temp 
0.378 

(0.710) 

-2.520 

(0.0228)* 

-3.620 

(0.00252)** 

South Land Oc Temp 
0.404 

(0.691) 

-2.801 

(0.01281)* 

-4.162 

(0.000835)*** 

8. H1N1 Pandemic 

CO2 Emissions 
2.330 

(0.0399)* 

-1.161 

(0.273) 

-1.885 

(0.0921) 

Land Temp 
0.564 

(0.584) 

-3.335 

(0.00756)** 

-4.482 

(0.00153)** 

Land Oc Temp 
0.690 

(0.504) 

-2.975 

(0.0139)* 

-4.262 

(0.00211)** 

North Land Oc Temp 
0.730 

(0.481) 

-2.606 

(0.0262)* 

-3.050 

(0.0138)* 

South Land Oc Temp 
0.429 

(0.676) 

-3.642 

(0.00452)** 

-4.769 

(0.001017)** 

Table 1. Unit roots tests. (i) Refers to the model with no deterministic components; (ii) with an intercept, and (iii) with 

a linear time trend. Inside the parenthesis the p-value is reflected, outside the t-statistic with test critical value at 0,1% 

(*** ); 1% (**); 5% (*). 
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Identical results are obtained if other more updated unit root methods are used, 

such as those mentioned in the previous section. (These results are available from the 

authors upon request). 

Our results so far indicate that all the original series are nonstationary I(1); 

however, due to the low power of the unit root methods under fractional alternatives5, we 

also perform different ARFIMA (p, d, q) models to study the persistence of the 

subsamples corresponding to the different periods of pandemic since 1880. 

We select the most appropriate ARFIMA specification for each series for the 

Akaike information criterion (AIC; Akaike, 1973) and Bayesian information criterion 

(BIC; Akaike, 1979)6.  We allow for ARFIMA models of the form "(0, d, 0)", "(1, d, 0)", 

"(2, d, 0)", "(0, d, 1)", "(0, d, 2)", "(1, d, 1)", "(1, d, 2)", "(2, d, 1)", "(2, d, 2)", i.e., we 

choose any ARFIMA(p, d, q) with p and q being smaller than or equal to 2. Once the 

various configurations were calculated, and following the selection criteria mentioned 

above, the results are collected in Table 2. 

 

 

Long Memory test 

Data analyzed Model Selected d Std. Error Interval I(d) 

Global Flu Pandemic (GFP) 

CO2 Emissions ARFIMA (2, d, 2) 1.999704 0.809815 [0.67, 3.33] I(1), I(2) 

Land Temp ARFIMA (0, d, 0) 0.346508 0.272745 [-0.10, 0.80] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0.309616 0.274918 [-0.14, 0.76] I(0) 

North Land Oc Temp ARFIMA (0, d, 0) 0.316282 0.307083 [-0.19, 0.82] I(0) 

South Land Oc Temp ARFIMA (0, d, 0) 0.347257 0.248897 [-0.06, 0.76] I(0) 

Sixth Cholera Pandemic (SCP) 

CO2 Emissions ARFIMA (2, d, 2) 0.031729 0.724844 [-1.16, 1.22] I(0), I(1) 

 
5 See Diebold and Rudebusch (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996). 
6 Note, however, that the AIC and the BIC may not necessarily be the best criteria in applications involving fractional 

differentiation . See, e.g. Beran (1998). 
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Land Temp ARFIMA (0, d, 0) 0.409173 0.118911 [0.21, 0.60] I(d) 

Land Oc Temp ARFIMA (0, d, 0) 0.547342 0.168255 [0.27, 0.82] I(d) 

North Land Oc Temp ARFIMA (0, d, 0) 0.532731 0.120291 [0.33, 0.73] I(d) 

South Land Oc Temp ARFIMA (0, d, 0) 0.546337 0.175783 [0.26, 0.84] I(d) 

Encephalitis Lethargica Pandemic (ELP) 

CO2 Emissions ARFIMA (2, d, 2) 0.000752 0.379078 [-0.62, 0.62] I(0) 

Land Temp ARFIMA (0, d, 0) 0.295605 0.132778 [0.08, 0.51] I(d) 

Land Oc Temp ARFIMA (0, d, 0) 0.162323 0.280178 [-0.42, 0,51] I(0) 

North Land Oc Temp ARFIMA (0, d, 0) 0.000695 0.000000 N/A N/A 

South Land Oc Temp ARFIMA (0, d, 0) 0.542281 0.222463 [0.18, 0.91] I(d) 

Spanish Flu 

CO2 Emissions ARFIMA (2, d, 2) 0.483415 0.194936 [0.16, 0.80] I(d) 

Land Temp ARFIMA (0, d, 0) 0.122845 0.398497 [-0.53, 0.78] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0.521546 0.353553 [-0.06, 1.10] I(0), I(1) 

North Land Oc Temp ARFIMA (0, d, 0) 0.190815 0.448218 [-0.55, 0.93] I(0) 

South Land Oc Temp ARFIMA (0, d, 0) 0.677094 0.248314 [0.27, 1.09] I(1) 

Asian Flu 

CO2 Emissions ARFIMA (2, d, 2) 0.490717 0.570964 [-0.45, 1.43] I(0), I(1) 

Land Temp ARFIMA (0, d, 0) 0.328255 0.294040 [-0.16, 0.81] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0.221126 0.319530 [-0.30, 0.75] I(0) 

North Land Oc Temp ARFIMA (0, d, 0) 0.264609 0.334664 [-0.29, 0.82] I(0) 

South Land Oc Temp ARFIMA (0, d, 0) 0.036722 0.280214 [-0.42, 0.50] I(0) 

Hong Kong Flu  

CO2 Emissions ARFIMA (0, d, 1) 0.391767 0.041207 [0.32, 0.46] I(d) 

Land Temp ARFIMA (0, d, 0) 0.051361 0.302555 [-0.45, 0.55] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0.000982 0.000000 N/A N/A 

North Land Oc Temp ARFIMA (0, d, 0) 0.000577 0.000000 N/A N/A 

South Land Oc Temp ARFIMA (0, d, 0) 0.000227 0.000000 N/A N/A 

SARS Pandemic  

CO2 Emissions ARFIMA (0, d, 0) 1.106565 0.174356 [0.82, 1.39] I(1) 

Land Temp ARFIMA (0, d, 0) 0.220313 0.276622 [-0.23, 0.68] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0.175943 0.281709 [-0.29, 0.64] I(0) 

North Land Oc Temp ARFIMA (0, d, 0) 0.151330 0.270351 [-0.29, 0,60] I(0) 

South Land Oc Temp ARFIMA (0, d, 0) 0,000433 0.000000 N/A N/A 

H1N1 Pandemic  

CO2 Emissions ARFIMA (0, d, 0) 0.597296 0.208375 [0.25, 0,94] I(d) 

Land Temp ARFIMA (0, d, 0) 0.029406 0.304302 [-0.47, 0.53] I(0) 

Land Oc Temp ARFIMA (0, d, 0) 0,000989 0.000000 N/A N/A 
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North Land Oc Temp ARFIMA (0, d, 0) 0,001622 0.000000 N/A N/A 

South Land Oc Temp ARFIMA (0, d, 0) 0,000215 0.000000 N/A N/A 

Table 2. Results of long memory tests. The second column displays the selected model, indicating the orders for the AR 

and MA dynamics. Column 3 reports the estimates of d while Column 4 the associated standard error. The 95% 

confidence band is displayed in Column 5, and Column 6 indicate the nature of the process according to the estimated 

value of d. 

 

 

 

Table 2 displays the estimates of the fractional parameter d and the AR and MA 

terms obtained using Sowell's (1992) maximum likelihood estimator of various ARFIMA 

(p, d, q) specifications with all combinations of (p, q) with p, q ≤ 2, for global annual 

temperatures (land temperatures, land and ocean temperatures and Northern and Southern 

hemispheres temperatures) and global annual CO2 emissions in each pandemic subperiod.  

Starting with the CO2-emissions we see that the values of d range widely between 

0.0007 (ELP) TO 1.9997 (GFP), and though the confidence intervals are, in some cases, 

very wide (clearly due to the small sample sizes in some of the periods examined) we 

observe that the I(0) hypothesis cannot be rejected in the cases of the Sixth Cholera 

Pandemia (SCP), the Encephalitis Lethargica Pandemia (ELP), and the Asian Flu (AF), 

while the I(1) null cannot be rejected for the Global Flu Pandemia (GFP), the Sixth 

Cholera Pandemia (SCP), the Asian Flu (AF) and the SARS; finally, these two hypotheses 

are rejected in favour of I(d, 0 < d < 1) behaviour in the cases of Spanish Flu (SF), Hong 

Kong Flu (HKF)  and the HINI Pandemia. Thus, the results here are very heterogeneous 

across the different periods of pandemics. 

Focusing next on the temperatures, all values of d are now in the range (0, 1) 

implying fractional integration, and the highest values correspond to the Sixth Cholera 

Pandemia ( SCP), with the values of d ranging between 0.4091 (Land Temp.) and 0.5473 

(Land Oc. Temp.). In many cases, the I(0) hypothesis cannot be rejected in any single 

case (GFP, AF, HKF or SARS) but neither for SF in three out of the four temperature 

series. In general, we observe that the orders of integration are smaller than 1 in all cases 
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for the temperature series (the only exception is Land Oc. Temp. for the Spanish Flu 

(SF)), implying mean reversion, with shocks having temporary effects and disappearing 

by themselves in the long run.  

 

5.  Concluding remarks 

In this paper we have examined forty time series corresponding to the eight pandemic 

subsamples (Global Flu Pandemic, Sixth Cholera Pandemic, Encephalitis Lethargica 

Pandemic, Spanish Flu, Asian Flu, Hong Kong Flu, SARS Pandemic and H1N1 

Pandemic) that have been taken place during the last 120 years to understand if these 

pandemic episodes follow a similar pattern. 

Our first focus has been to analyze the statistical properties of these time series 

using unit roots methods. We started by performing ADF unit root tests and the results of 

these and other similar methods suggest that the series are nonstationary I(1) while the 

first differences are stationary I(0). 

On the other hand, and in order to be more general, we also estimated the 

differencing parameter d in terms of a fractional model using an ARFIMA (p, d, q) 

approach. To select the right model, we combined all the possible (p, d, q) cases, with p 

and q smaller than or equal to 2 to find the best specification throughout AIC and BIC 

methods. 

Our results indicate that for the CO2 emissions the results are quite heterogeneous 

across the different pandemic periods and the intervals are in some cases very wide such 

that for example, for the Global Flu Pandemic, the I(1) and the I(2) hypotheses cannot be 

rejected, and for the SCP and AF the same happens for the I(0) and I(1) hypotheses; for 

SARS only the I(1) cannot be rejected and for ELP, the I(0) one; finally for SF, HKF and 

HINI, the estimated values of d are constrained between 0 and 1. Thus, only for the last 



 14 

three subsamples (SF, HKF and HINI) there is some evidence of mean reversion and 

transitory shocks contrary to what happens in the rest of the cases. For the temperature 

series, mean reversion occurs in all cases, since all the estimated values of d are strictly 

smaller than 1, and the highest levels of persistence occur in the case of SCP and SP. For 

the remaining periods, the I(0) hypothesis is rarely rejected. and thus the recovery of a 

shock will take place in a shorter period of time. These results are consistent with those 

presented in Gil-Alana and Monge (2020) where the emissions are found to be I(1) or I(d) 

with d close to 1 (as in the cases of the Global Flu Pandemic, the Sixth Cholera Pandemic, 

the Asian Flu and SARS Pandemics), while the temperatures display orders of integration 

strictly smaller than 1, and thus show mean reverting behaviour. These results suggest 

that in the event of exogenous shocks, temperatures will recover by themselves unlike 

what happens with the emissions in the majority of the cases where there is no reversion 

to the mean and strong actions should be adopted to recover the original long term 

projections. 
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