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A B S T R A C T   

This paper deals with the analysis of the evolution of international trade after COVID-19, 
examining commodity prices, the shipping industry, and the influence of the cost of bunker 
fuel. To this end, we use techniques based on fractional integration, fractional cointegration VAR 
(FCVAR) and wavelet analysis. Monthly data relating to heavy fuel oil prices and the shipping 
market from October 2011 to September 2021 are used. Using fractional integration in the post- 
break period, a lack of mean reversion is observed in all cases, which means that, for the com
modity prices and shipping market indices, a change in trend will be permanent after COVID-19 
unless strong measures are carried out by the authorities. Using wavelet analysis, we conclude 
that the demand shock represented in the indices mentioned above has led the price of fuel oil 
since the beginning of the pandemic, and bunker fuel is not relevant in determining the cost of 
maritime transport.   

1. Introduction 

In December 2019, the pandemic experienced around the world provoked by COVID-19 has had a severe and versatile impact on 
society and consequently on the economy (Sohrabi et al., 2020). To reduce the incidence of this virus, governments around the world 
imposed a series of restrictions including, among others, distancing rules, the temporary closure of trade and service companies, 
catering, hotel business, and leisure facilities, mobility restrictions for non-essential trips and the obligation to wear a mouth-and-nose 
cover. 

Financial markets (Ramelli and Wagner, 2020) and national economies (Atkeson, 2020) have been affected by this virus that first 
appeared in Wuhan, in the city of Hubei (Sohrabi et al., 2020). Furthermore, the labor market (see Yu et al., 2020; Monge, 2021) and 
certain sectors in particular have been affected by the restrictions such as, among others, the health sector (see Mishra and Rampal, 
2020; Okoi and Bwawa, 2020), the energy sector (see Fezzi and Fanghella, 2020; Gil-Alana and Monge, 2021), and the tourism sector 
(see de Vos, 2020; Wang et al., 2020). 

Baqaee and Farhi (2020), through a disaggregated model that includes multiple sectors, multiple factors, input-output linkages, 
downward nominal wage rigidities, credit-constraints and zero lower bound, try to measure the impacts of the COVID-19 on the 
relationship between supply and demand. 

According to Ludvigson et al. (2020) and from the demand point of view, people have been accumulating supplies as a response to 
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shortages as the epidemic has spread. Also, we have witnessed how our purchasing habits have changed, increasing the demand for 
delivery services and online shopping through the internet, considerably increasing the volume of freight transport and the demand for 
supplies (see Liu, T. et al., 2020; Liu, M et al., 2020). 

On the supply side, due to the closure of factories and stoppages in production, the supply chain has been affected globally. Araz 
et al. (2020) state that the pandemic outbreak has brought about the most serious disruption encountered in decades, interrupting 
many global supply chains. Fortune (2020) revealed that 94% of the Fortune 1000 companies reported disruptions, driven by coro
navirus, in their supply chains. Furthermore, in a report issued by Dun and Bradstreet (2020), 51,000 companies around the world are 
listed as having one or more direct suppliers in Wuhan and at least 5 million companies around the world have one or more tier-two 
suppliers in the Wuhan region, the origin of COVID-19. Moreover, 938 of the Fortune 1000 companies have tier-one or tier-two 
suppliers in the Wuhan region. Finally, Linton and Vakil (2020) conclude that the world’s largest 1000 supply chains own more 
than 12,000 facilities in the quarantine areas. 

Following Ivanov (2020), the SARS-CoV-2 outbreak corresponds to a special case of supply chain risks (within the concept 
disruption risks mentioned in the papers of Ivanov et al., 2017; Kinra et al., 2020; Hosseini et al., 2019) because it scales up quickly and 
disperses over many geographic regions, similar to SARS, MERS, Ebola, Swine flu, etc. This kind of risk is characterized by three 
components: first, long-term disruption and its unpredictable scaling. Second, simultaneous disruption in the supply chain (i.e., the 
ripple effect) and epidemic outbreak propagation in the population (i.e., pandemic propagation), and finally, simultaneous disruptions 
in the infrastructure of supply, demand, and logistics. 

The chief link in the global supply chain is represented by the shipping industry which accounts for 80% of the total transport that 
takes place globally (UNCTAD, 2019). 

Dittmann and Granger, 2002 argue that the international economic and trade environment affect the shipping market, this being a 
periodic market based on international trade. 

Many research papers conclude that there is high volatility in the maritime transport market (see Veenstra and Franses, 1997; 
Kavussanos and Alizadeh, 2001; Alizadeh and Nomikos, 2011; Alizadeh, 2013; Dai et al., 2014; Tsouknidis, 2016; Theodossiou et al., 
2020; Bai and Lam, 2021; among others). 

There are several research papers that try to identify the influential factors on freight rates (see Beenstock and Vergottis, 1989; Xu 
et al., 2011; Dai et al., 2015; Bai and Lam, 2019; Gavriilidis et al., 2018; Angelopoulos et al., 2020; Lim et al., 2019; Alizadeh and 
Talley, 2011; Adland et al., 2016). Although, the freight rate is largely determined by supply and demand fundamentals, these two 
variables do not fully explain the high volatility experienced in the shipping market. According to Papapostolou et al. (2014, 2016) 
market sentiments can be part of the market fundamentals discrepancy. On the other hand, Grammenos and Arkoulis (2002) stated 
that the shipping industry is affected by oil prices, laid up tonnage and exchange rates. Angelopoulos et al. (2020) confirmed the lead 
and lag relationship between oil prices and freight rates in shipping markets, therefore enabling better forecasting for the tanker and 
the dry bulk market (Gavriilidis et al., 2018; Michail, 2020). 

Therefore, the objective of this paper is to understand the evolution of international trade after COVID-19 through the analysis of 
commodity prices, the shipping industry and the influence of the cost of bunker fuel oil prices. To this end, we carry out a statistical 
analysis using an ARFIMA model (fractional integration techniques) to understand the statistical properties of the time series. 
Moreover, to understand the long-term relationship of the time series we use a Fractional Cointegration VAR (FCVAR) approach. 
Finally, we do a wavelet analysis to analyze the structural change produced by the COVID-19 outbreak. 

In the maritime economic literature, we find evidence of mean reversion (see Zannetos, 1966; Strandenes, 1984; Tvedt, 1997; 
Adland and Cullinane, 2006; among others) and unit root behavior (non-stationary) in the spot freight rate (see Berg-Andreassen, 
1996; Glen and Rogers, 1997; and Kavussanos and Alizadeh, 2002; among others). There are three reasons behind this behavior: first, 
the high degree of persistence in spot freight rate series (see Adland and Cullinane, 2006). Second, the choice of testing method, usually 
the Augmented Dickey-Fuller (ADF) unit root test (Dickey and Fuller, 1979; Said and Dickey, 1984). Adland and Cullinane (2006) 
show mean reversion in the extremes of the spot freight rate distribution. Finally, and according to Koekebakker et al. (2006), even if 
the assumption of non-stationary freight rates does not hold in a strict sense, it may be a convenient one from a technical point-of-view. 

To the best of our knowledge, this is the first paper that has analyzed the statistical properties of shipping indices and bunker fuel 
using the methodologies mentioned above. Therefore, the key objectives of our study are twofold. First, we want to carry out a 
univariate analysis to understand the behavior of each time series. Second, our intention is to examine whether the impact of heavy 
fuel oil prices on the shipping indices and commodity prices is temporary or permanent. This knowledge is extremely relevant to 
analyze what the effects of fuel oil prices on may be on shipping and commodity indices. The study is both crucial and timely as, despite 
the importance of oil in the literature in economics, political science and international relations, there is surprisingly little scholarly 
discussion regarding the role bunker fuel oil plays in shipping markets. 

The structure of this paper is as follows. Section 2 describes the data and the methodology applied in the research paper. Section 3 
shows the principal findings. Section 4 presents the conclusions. 

2. Data and methodology 

2.1. Dataset 

To carry out this research paper, we have obtained our dataset from Thomson Reuters Eikon. The variables that we use are: the 
Bloomberg Commodity Index representing the prices of raw materials, the Baltic Dry Index (BDI) representing the average cost per ton 
of chartering a vessel to transport raw materials, such as metals, grain and fossil fuel, by sea on the 26 routes around the world, the 
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HARPEX Shipping Index is slightly different to the BDI because this is an indicator of global economic fleet shipping activity that tracks 
changes in freight rates for container ships over broad categories. In addition, we consider the Shanghai Containerized Freight Index 
that shows the most up-to-date freight prices for container transport from the Chinese main ports, including Shanghai. Finally, we use 
prices of the bunker fuel that is used aboard vessels and which affects time-charter and spot rates, dry bulk and container ship indexes. 
We use monthly data from October 2011 to September 2021. The time series defined previously are represented in Fig. 1. 

Taking into account the new desulphurization legislation (Zis and Cullinane, 2020), the substitution effect between shipping 
segments (Kavussanos and Visvikis, 2016) and different vessel sizes (Tsouknidis, 2016), we can observe in Fig. 1 that the shipping 
markets were still recovering when the new virus hit the markets, at which point freight rates dropped by 73% for the dry bulk 
segment, 36% for the dirty tankers segment and 30% for the clean tanker segment (see Michail and Melas, 2020). In contrast, so far this 
year, the price of raw materials measured through the Bloomberg Commodity Index has increased by 33% and has reached highs not 
seen since 2015. Also, the Baltic Dry Index that measures daily the average cost per ton at which ship owners charter their vessels and 
through which 95% of the global transport of solid raw materials is carried out, has accumulated an increase of almost 250%. 
Container shipping as measured by the Harpex index has appreciated 800% since June last year. Another way to measure this is 
through the prices paid for containers between the main routes in the world using the Shanghai Shipping Exchange Containerized 
Freight Index, which includes the 15 largest global routes with the port of Shanghai. This index, which averages all the journeys made, 
has accumulated an increase of 65% so far this year. 

2.2. Unit roots 

To analyze the stationarity of our dataset we have employed unit root tests such as ADF tests based on Fuller (1976) and Dickey and 
Fuller (1979). Non-parametric estimates of spectral density of ut at zero frequency have been used following the methodology pro
posed by Phillips (1987) and Phillips and Perron (1988). Finally, the stationary test of Kwiatkowski et al. (1992) and the unit root tests 
proposed by Elliot et al. (1996) and Ng and Perron (2001) have been used, taking into account their deterministic trends. We conclude 
that the same results have been produced by all of them. 

2.3. ARFIMA (p, d, q) model 

The non-stationary nature of many economic and financial time series is an important characteristic that can be described by 
several models. The standard approach until the 1980s was to use deterministic functions of time where the residuals on the regression 
model were I(0) stationary. Following the research carried out by Nelson and Plosser (1982) there was a consensus that the 
non-stationary component of most series was stochastic and the use of unit roots or first differences I (1) was the way to go. On the 
other hand, to achieve stationarity I (0), the number of differences does not necessarily have to be an integer value, since it can be any 
point on the real line and therefore fractional I(d). 

Observations that are far apart in time but highly correlated is a feature of long memory and is able to be captured by the I(d) 
models. The form of this models is: 

Fig. 1. Behavior of prices of freight, commodities and heavy fuel oil prices.  
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(1 − L)dxt = ut, t = 1, 2, …, (1)  

where xt represents a time series, d represents any real value, L is the lag-operator (Lxt = xt− 1) and the covariance stationary process is 
represented by ut where the spectral density function, which is positive and finite at the zero frequency, displays a type of time 
dependence in the weak form. For this reason, we can state if ut is ARMA (p, q), xt is ARFIMA (p, d, q). Adenstedt (1974), Granger and 
Joyeux (1980), Granger (1980, 1981) and Hosking (1981) were the authors who introduced the idea of fractional integration. 

From equation (1), the polynomial (1 − L)d is expressed in terms of binomial expansion where for all real d, xt depends not only on a 
finite number of past observations but on its entire history. Thus, a higher value of d implies a higher level of association between the 
observations of the series. 

Given the parameterization in (1), one can distinguish between several cases depending on the value of the parameter d, and several 
specifications based on (1) can be observed. Following Hosking (1981), Table 1 below summarizes the different values of d and the 
corresponding consequences for the mean (or trend), variance, and duration of the shock. 

We present our results following the likelihood process suggested by Sowell (1992) in contrast to various other procedures (see 
Geweke and Porter-Hudak, 1983; Phillips, 1999, 2007; Robinson, 1994, 1995a,b; etc.). Following the Akaike information criterion 
(AIC) (Akaike, 1973) and the Bayesian information criterion (BIC) (Akaike, 1979) we select the most appropriate ARFIMA model. 

2.4. FCVAR model 

The Fractionally Cointegrated Vector AutoRegressive (FCVAR) model is a generalization of Johansen’s (1996) Cointegrated Vector 
AutoRegressive (CVAR) model to allow for fractional processes of order d that co-integrate to order d − b with b > 0. The FCVAR model 
was introduced by Johansen (2008) and developed by Johansen and Nielsen (2010, 2012). The advantage of this model is that it allows 
the use of stationary and non-stationary time series. 

To introduce the FCVAR model, we present first the non-fractional CVAR model. Being Yt , t = 1,…,T a p-dimensional I(1) time 
series, the CVAR model is: 

ΔYt =αβ
′

Yt− 1 +
∑k

i=1
ΓiΔYt− i + εt = αβ

′

LYt +
∑k

i=1
ΓiΔLiYt + εt. (2)  

where Δb and Lb = 1 − Δb represent the difference and the lag operator. These are used to derive the FCVAR model. We then obtain: 

ΔbYt = αβ
′

LbYt +
∑k

i=1
ΓiΔLi

bYt + εt, (3)  

which is applied to Yt = Δd− bXt such that 

ΔdXt = αβ
′

LbΔd− bXt +
∑k

i=1
ΓiΔbLi

bYt + εt, (4)  

where, εt is p-dimensional independent and identically distributed with mean zero, and variance-covariance matrix Ω. The parameters 
α and β are p × r matrices, where 0 ≤ r ≤ p. In matrix β the columns are the cointegrating relationships and β′Xt are the stationary 
combination, i.e., the long-run equilibrium, which is integrated to order d, and the short-term parts from the long-run equilibrium are 
integrated to order d − b. The coefficients in α correspond to the speed of adjustment unto equilibrium. Therefore, αβ

′ is the adjustment 
long-run and Γi represents the short-run behavior of the variables. 

In contrast to the CVAR model, there are two additional parameters in the FCVAR model. The order of fractional integration of the 
observable time series is represented by the parameter d. The degree of fractional cointegration, that is, the reduction in fractional 
integration order of β′Xt compared to Xt itself, is represented by the parameter b. 

The relevant ranges for b are 
(
0,12

)
, in which case the equilibrium errors are fractional of order greater than 1/ 2 and therefore non- 

Table 1 
Interpretation of the results of d for the ARFIMA models.  

d Mean (or trend) and variance Shock duration 

d = 0 Short-run mean-reversion 
Finite variance 

Short-lived 

0 < d < 0.5 Long-run mean reversion 
Finite variance 

Long-lived 

0.5 ≤ d < 1 Long-run mean reversion 
Infinite variance 

Long-lived 

d = 1 No mean-reversion 
Infinite variance 

Infinite 

d > 1 No mean-reversion 
Infinite variance 

Infinite; effect increase as time moves forward  
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stationary although mean-reverting, and 
( 1

2,1
]
, in which case the equilibrium errors are fractional of the order less than 1/ 2 and are 

stationary (Dolatabadi et al., 2015). Note that for d = b = 1, the FCVAR models is reduced to the CVAR model, which is thus nested in 
the FCVAR model as a special case. 

As an intermediate step towards the final model, we consider a version of model (2) with d = b as an assumption of no persistence in 
the cointegration vectors and a constant mean term for the cointegration relations. That is to say: 

ΔdXt = α(β′

LdXt + ρ′

) +
∑k

i=1
ΓiΔdLd

iXt + εt (5) 

The simple model considered is the following: 

Δd(Xt − μ)= Ldαβ
′

(Xt − μ)+
∑k

i=1
ΓiΔdLd

iXt + εt (6)  

where μ represents the level parameter that shifts each of the series by a constant to avoid the bias related to the starting values in the 
sample (Johansen and Nielsen, 2014). β′ μ = − ρ′ represents the mean stationary cointegrating relations. 

The asymptotic analysis in Johansen and Nielsen (2012) shows that the maximum likelihood estimators of (d, α, Γ,…,Γ2) are 
asymptotically normal, while the maximum likelihood estimator of (β, ρ) is asymptotically mixed normal when d0 < 1/ 2 and 
asymptotically normal when d0 > 1/2. Several empirical papers such as Baruník and Dvořáková (2015); Maciel (2017); Aye et al. 
(2017); Dolatabadi et al. (2018); Jones et al. (2014); Gil-Alana and Carcel (2020); Monge and Gil-Alana (2021); Monge and Cristóbal, 
2021; among others have used FCVAR models. 

The MATLAB codes for the FCVAR model estimation are provided in Nielsen and Popiel (2018). 

2.5. Continuous Wavelet Transform (CWT) 

Continuous Wavelet Transform (CWT) has been applied to several research papers in finance and economics in order to understand 
the behavior of time series in the time-frequency domain (see Aguiar-Conraria and Soares, 2011 and 2014; Vacha and Barunik, 2012; 
Dewandaru et al., 2016; Tiwari et al., 2016; Jammazi et al., 2017; Monge and Gil-Alana, 2021; Monge and Cristóbal, 2021; among 
others). 

Stationarity is not required to carry out a wavelet analysis. This methodology also allows us to find evidence of changes in patterns 
between the time series being analyzed. 

Two tools are used with this methodology to get the results: wavelet coherency and wavelet phase-difference. 
First, we use wavelet coherency that shows the correlation in time and frequency between both time series in a dimensional di

agram in a function of τ and a, identifying hidden patterns or information. The WTx(a, τ) is defined as: 

WTx(a, τ)=
∫+∞

− ∞

x(t)
1̅
̅̅
a

√ ψ*
(t − τ

a

)
dt,

where WTx(a, τ) refers to wavelet coefficients of x(t); a refers to the position of a wavelet in the frequency domain, τ refers to the 
position in the time domain. The mother wavelet (ψ) that has been chosen for this research paper has been Morlet because we are able 
to measure the synchronism between time series due to its characteristics of complex sine wave within a Gaussian envelope (see 
Aguiar-Conraria and Soares, 2014). 

Second, we use the wavelet coherence to interpret and understand the integration of the time series obtained in the previous step. 
Thus, we define the wavelet coherence as: 

WCOxy =
SO

(
WTx(a, τ)WTy(a, τ)*)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SO
(
|WTx(a, τ)|2

)
SO

(⃒
⃒WTy(a, τ)

⃒
⃒2
)√ ,

where SO is a smoothing operator in both time and scale. Without the smoothing operator, the wavelet coherency would be always one 
for all times and scales (see Aguiar-Conraria et al., 2008 for details). Aguiar-Conraria’s website provides the CWT’s MATLAB code for 
the calculations of estimators and test statistics..1 

3. Empirical results 

3.1. Unit roots tests 

To examine the statistical properties of the original series and its differences to obtain robust results, we start the analysis by 

1 https://sites.google.com/site/aguiarconraria/joanasoares-wavelets. 
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performing the Augmented Dickey-Fuller test (ADF), Phillips and Perrron (Phillips and Perron, 1988) and Kwiatkowski et al.,1992. 
Table 2 displays the results, which suggest that. 

3.2. results of long memory tests 

According to the methodology explained before, and the low power of the unit root methods under fractional alternatives,2 we use 
ARFIMA (p, d, q) models to study the persistence of (…). AIC criterion (Akaike, 1973) and BIC (Akaike, 1979) criterion were selected to 
select AR and MA orders in the models3 

The estimates of d following the maximum likelihood estimator proposed by Sowell (1992) are in Table 3. We have considered 
various ARFIMA (p, d, q) specifications with all combinations of p, q ≤ 2 for each time series. 

The first thing that we observe from Table 3 is that Heavy Fuel Oil, the Bloomberg Commodity Index and the Baltic Dry Index show 
evidence of mean reversion (d< 1) with estimated values of d equal to 0.79, 0.96 and 0.53, respectively. However, if we follow the 
confidence interval for these time series, in the case of commodity prices and the Baltic Dry Index the unit root null hypothesis I(1)
cannot be rejected, while for the remaining two series (the Harpex Shipping Index and the Shanghai Shipping Exchange Containerized 
Freight Index), this hypothesis is rejected in favor of a higher degree of integration. With the exception of Bunker fuel, there is no 
evidence of mean reversion in any single case and the shocks are expected to be permanent (e.g., lasting forever), causing a change in 
trend. Therefore strong measures will be required by the authorities to recover the original trends. 

3.3. results of FCVAR 

To contrast the possible existence of persistence in the long-run co-movements of the series, we use FCVAR model proposed by 
Johansen and Nielsen (2012). Table 4 summarizes the results of the FCVAR model. 

Following the indications suggested by Jones et al. (2014) regarding the lag value (k = 3). Also, we consider deterministic com
ponents and cointegration rank (r) to get our results. In the upper part of Table 4, we report the results assuming that d = b, i.e., that 
the long run equilibrium relationship is I(0). Evidence of cointegration is found in all cases with the lowest degree of integration 
observed in the case of commodity prices (0.642). If the coefficients for d and b are supposed to be different, some evidence of a low 
order of cointegration is found in the case of the prices for container transport from the Chinese main ports (d= 0.810 and b = 0.645). 
For the rest of the cases, d is equal to b (d= b) supporting the standard cointegration, i.e., I(0) behavior in the equilibrium errors. 
Considering the results of the cointegrating test for Bunker fuel and Shanghai Shipping Exchange Containerized Freight Index under 
the assumption of d ∕= b, we cannot reject the hypothesis where the shock duration is mean-reverting in the long-run. In all other cases, 
we assume that the shock duration has a short-lived duration due to the short-run stationary behavior. 

3.4. COVID-19 and Continuous Wavelet Transform 

To identify the dependence over time and to study the behavior of the structural change caused by COVID-19, we have calculated 
the wavelet coherency and phase difference between Bunker fuel and the remaining indices. The results are displayed in Fig. 2. 

Panel (a) represents the wavelet coherency that explains the interrelations between both time series, showing the strength of the 
relationship and in which frequency occurs. From scale 1 (a single month) up to scale 16 (approximately one year and four months), 
the frequencies are displayed on the vertical axis. All the sample period is represented in the horizontal axis. 

To identify the high frequency and the high coherence with statistical significance of local correlations between the time-frequency 
domain we have used Monte Carlo simulations, where the regions with significance values at 5% are represented by the black contour. 
The relation of both time series, one in relation to the other, is understandable using the frequency bands represented in panel (b) and 
(c), that are the 1–12 frequency band and the 12.5–16 frequency band, respectively. 

Focusing on the start of the pandemic outbreak in China, in December 2019 we observe from Fig. 2 statistically significant co
herency in the four results obtained. Doing the analysis by indexes, the first result is related to the bunker prices and commodity prices. 
We observe in the pandemic outbreak a high degree of coherence in the low frequency (short-term) that corresponds to cycles between 
3 and 12 months. Second and third results are related to the bunker fuel prices and the Baltic Dry Index and bunker fuel prices with the 
Harpex index, respectively. The interrelations between these two pairs of time-series occur in the short-term, between 3 and 4 months. 
Finally, we have calculated the coherency between heavy fuel oil prices and the Shanghai Shipping Exchange Index obtaining the same 
result as the previous ones. 

If we focus on the phase-difference, we observe that the high coherency mentioned before for the pandemic episode stay between 0 
and − π/2, which means that heavy fuel oil prices are negatively correlated with every index mentioned before. Thus, the demand 
shock represented in the indices mentioned in this paper have led the price of fuel oil since the beginning of the pandemic, and bunker 
fuel is not relevant to determining the cost of maritime transport. 

Once we have reached this result and knowing that it is the demand shock that is guiding the behavior of the price of maritime 
transport fuel, we analyze statistically the behavior of this demand through the different indices already mentioned previously. To do 

2 See Diebold and Rudebusch (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996).  
3 According to Hosking (1981) and Beran et al. (1998), the AIC and BIC criteria could not be the best criteria under the assumptions of fractional 

models. 
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so, we use ARFIMA models. The results are reported in Table 5. 
We observe from Table 5 that the estimates of d after structural change are below 1 only for the Baltic Dry Index. Nevertheless, 

focusing on the confidence interval, we see that the Baltic Dry Index and the remaining time series cannot reject the hypothesis I(1). 
Thus, we cannot reject the hypothesis of I(1) in any case, implying a lack of mean reversion and that shocks are expected to be 
permanent, causing a change in trend. 

4. Concluding comments 

This paper contributes to the literature on understanding the behavior of commodity prices and the shipping market under the 
influence of heavy fuel oil prices after a pandemic outbreak such as COVID-19. 

The increase in the demand for delivery services and online shopping through the internet occasioned by the changes in our 
purchasing habits during the pandemic (see Liu et al., 2020a; Liu et al., 2020b) and the closure of factories and stoppage in production, 
have meant that the supply chain has been affected globally (see Araz et al., 2020). A bottleneck has been generated in international 
trade affecting a shipping industry which accounts for 80% of the total transportations that are taking place globally (UNCTAD, 2019). 

Furthermore, oil price is a key factor for the shipping industry as oil is the main energy source for the transport of commodities by 

Table 2 
Unit roots tests.   

ADF PP KPSS 

(i) (ii) (iii) (ii) (iii) (ii) (iii) 

Heavy Fuel Oil − 0.8343 − 2.0764 − 2.1451 − 2.1482 − 2.4979 1.2537 0.3581 
Bloomberg Commodity Index − 1.4365 − 1.8956 − 0.5724 − 1.6114 − 0.6586 1.9261 0.4327 
Baltic Dry Index 0.1824 − 0.9468 − 1.7042 − 1.6693 − 2.3136 0.6054 0.2326 
Harpex Shipping Index 3.6221 6.5247 6.0029 10.361 8.843 1.0023 0.2711 
Shanghai Shipping Exchange Containerized Freight Index 3.1728 3.5613 3.1298 4.6202 4.1646 0.5635 0.3592 

(i) Refers to the model with no deterministic components. 
(ii) with an intercept, and. 
(iii) with a linear time trend. 
* Denotes a statistical significance at the 5% level. 

Table 3 
Results of long memory tests.  

Data analyzed Sample size (weeks) Model Selected d Std. Error Interval I(d) 

Long memory test 
Heavy Fuel Oil 120 ARFIMA (2, d, 2) 0.79 0.1050238 [0.62, 0.96] I(d) 
Bloomberg Commodity Index 120 ARFIMA (2, d, 2) 0.96 0.1186170 [0.76, 1.16] I(1) 
Baltic Dry Index 120 ARFIMA (2, d, 1) 0.53 0.283567 [-0.11, 1.17] I(0), I(1) 
Harpex Shipping Index 120 ARFIMA (1, d, 1) 1.47 0.0441022 [1.40, 1.54] I(d > 1) 
Shanghai Shipping Exchange Containerized Freight Index 120 ARFIMA (2, d, 2) 1.42 0.1203744 [1.22, 1.62] I(d > 1)  

Table 4 
Results of the FCVAR model.  

Series d = b β α μ 

Bloomberg Commodity Index 0.642 
(0.102)

Var 1 = 1.000 
Var 2 = − 1.236 

Var 1 = − 0.171 
Var 2 = 0.001 

Var 1 = 493.566 
Var 2 = 281.787 

Baltic Dry Index 0.721 
(0.142)

Var 1 = 1.000 
Var 2 = − 1.092 

Var 1 = − 0.014 
Var 2 = 0.083 

Var 1 = 505.931 
Var 2 = 1715.034 

Harpex Shipping Index 0.875 
(0.107)

Var 1 = 1.000 
Var 2 = − 11.570 

Var 1 = 0.000 
Var 2 = − 0.018 

Var 1 = 486.312 
Var 2 = 472.299 

Shanghai Shipping Exchange Containerized Freight Index 0.828 
(0.181)

Var 1 = 1.000 
Var 2 = − 0.427 

Var 1 = 0.007 
Var 2 = − 0.401 

Var 1 = 475.284 
Var 2 = 1034.456 

Series d ∕= b β α μ 

Bloomberg Commodity Index d = 1.104 (0.155)
b = 1.104 (0.280)

Var 1 = 1.000 
Var 2 = − 1.510 

Var 1 = − 0.217 
Var 2 = − 0.024 

Var 1 = 481.800 
Var 2 = 282.478 

Baltic Dry Index d = 0.112 (0.000)
b = 0.112 (0.000)

Var 1 = 1.000 
Var 2 = − 0.806 

Var 1 = − 2.527 
Var 2 = − 34.288 

Var 1 = 512.503 
Var 2 = 1722.663 

Harpex Shipping Index d = 0.875 (0.136)
b = 0.875 (0.232)

Var 1 = 1.000 
Var 2 = − 11.570 

Var 1 = 0.000 
Var 2 = − 0.018 

Var 1 = 486.312 
Var 2 = 472.299 

Shanghai Shipping Exchange Containerized Freight Index d = 0.810 (0.207)
b = 0.645 (0.599)

Var 1 = 1.000 
Var 2 = − 0.406 

Var 1 = 0.032 
Var 2 = − 0.789 

Var 1 = 476.524 
Var 2 = 1017.848  
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sea throughout the world, and shipping markets play a role in final prices of energy, agricultural goods and metals (Geman and Smith, 
2012). 

To carry out our analysis we use bunker fuel to represent oil prices, Bloomberg the Commodity Index represents commodity prices 
and finally, the Baltic Dry Index, the HARPEX Shipping Index and The Shanghai Containerized Freight Index represent the shipping 

Fig. 2. Wavelet coherency and phase difference results. 
The contour designates the 5% significance level. Coherency ranges from blue (low coherency) to yellow (high coherency). (a) Wavelet coherency. 
(b)-(c)Phase difference. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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industry. Monthly data from October 2011 to September 2021 are used. 
We analyze the statistical properties of these time series, measuring the degree of persistence by using fractional integration 

techniques. Moreover, we analyze the long-term relationship of the time series using a Fractional Cointegration VAR (FCVAR) 
approach. The results show that heavy Fuel Oil, Bloomberg Commodity Index and Baltic Dry Index show evidence of mean reversion 
(d< 1) with a estimated values of d equal to 0.79, 0.96 and 0.53, respectively. But, if we follow the confidence interval for these time 
series, in the case of commodity prices and the Baltic Dry Index the unit root null hypothesis I(1) cannot be rejected, while for the 
remaining two series (the Harpex Shipping Index and the Shanghai Shipping Exchange Containerized Freight Index), this hypothesis is 
rejected in favor of a higher degree of integration. Except for the Bunker fuel, there is no evidence of mean reversion in any single case 
and the shocks are expected to be permanent (e.g., lasting forever), causing a change in trend. Thus, strong measures will be required 
by the authorities to recover the original trends. 

Considering the results of cointegrating test that analyze the long-run behavior of heavy fuel oil with respect to the other variables 
we conclude that for Bunker fuel and the Shanghai Shipping Exchange Containerized Freight Index under the assumption of d ∕= b, we 
cannot reject the hypothesis where the shock duration is mean-reverting in the long-run. In all other cases, we assume that the shock 
duration has a short-lived duration due to the short-run stationary behavior. 

In addition, to identify the dependence over time and to study the behavior of the structural change occasioned by COVID-19, we 
calculate the wavelet coherency and phase difference. We conclude that the demand shock represented in the indices mentioned in this 
paper has led the price of fuel oil since the beginning of the pandemic, and that bunker fuel is not relevant to determining the cost of 
maritime transport. 

The findings are of great interest to analyze what the effects of bunker fuel are on commodity prices and the shipping industry, 
helping market participants to understand better what it is happening in international trade. 
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