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An instance-based-learning simulation model to predict knowledge 

assets evolution involved in potential digital transformation projects 

Software engineering professionals need to consider which technological solution 

is appropriate to meet their client’s needs as well as the impact of solutions on 

their organisation. However, the decision to implement a solution is not yet 

explicitly based on how it may empower the most important organisational 

assets: the knowledge assets. Organisational knowledge assets are the foundation 

of the knowledge economy, and a key element in evaluating the health of an 

organisation. This paper provides software engineers a simulation model which 

illustrates the decision-making process for the implementation of technological 

solution based on an evaluation of their client’s knowledge assets and how such 

assets may impact and be impacted by the deployment of a specific technological 

solution. To do this, we use an agent-based approach, implementing an instance-

based learning model (a cognitive approach) to represent scenarios for decisions 

based on experiences. A pool of 11 case studies was used to train the prediction 

engine and validate the usefulness of the simulation model in generating 

scenarios and nurturing decision-making and user experiences. 

Keywords: digital business management; decision-making; knowledge assets 

management; decisions from experience; technology in the knowledge economy; 

digital business evolution  

  



Introduction 

Organizational decision-making must evolve as information and technology supporting 

it evolves as well. This paper presents an instance-based learning simulation model to 

visualize the evolution of organizational intangible assets involved in a potential digital 

transformation project, to make better decisions about to implement or not a specific 

digital transformation project given the intangible assets predicted evolution.  

Digitalisation is accepted as the way business will keep competitive in the present and 

the future, but, deciding which digital project to implement, and why, is the challenge 

that we propose to overcome by predicting the evolution of the intangible assets of the 

organization to be digitised, and given this evolution, decide whether or not 

implementing a specific digital transformation project.   

We propose to use a simulation model that takes as an entry a set of intangible assets 

characterised according to the SIPAC methodology (Sanchez-Segura, Medina-

Dominguez, et al., 2016) (a brief explanation of this methodology will be given below), 

and from that initial scenario of the real state of the organisational intangible assets, 

predict how those intangible assets would evolve, so that, based on this evolution, how a 

potential digital transformation project could be affected can be predicted as well, 

letting decision-makers to better decide whether or not implementing a specific digital 

transformation project.  

For building the simulation model in this work, an instance-based learning approach 

was used, which mimics the cognitive process of “learning based on experiences”, for 

representing organizational learning based on historic decisions, that is, this model 

represents decision making regarding digitalization processes and emulates the potential 

outcomes based on previous experiences that enable the model to predict the expected 

behaviour of a set of knowledge assets after a digitalization strategy is set and 

implemented. 



Considering this, we want to explore the following research question: 

• Is it possible to emulate the cognitive process of deciding if implementing or not 

a technological solution, and why, based on the evolution of the organizational 

knowledge assets? 

In the remainder of this section, we are going to explain what we understand by a 

competitive organization, why intangible assets are a lever to keep organizations 

competitive, and why the evolution of the status of organizational intangible assets are a 

key aspect to make decisions about implementing or not a specific digital 

transformation project. 

Software and technology are now an essential part of many businesses, irrespective of 

the field in which they operate. Software and technology can be said to be at hand and 

everywhere. Software companies operate within a complex sector inundated with 

information and where little or nothing is entirely under control. The internet revolution, 

the rapid growth of computing properties, the changing landscape of software and 

technology and the changing needs of businesses have created a market in which only 

the most competitive can survive. 

The term competitive can be understood as “the more a software and technology 

company sells the better”. In the knowledge and/or digital era, however, 

competitiveness is not about just selling, but rather about helping clients achieve their 

business goals using the appropriate software and technological solutions in a 

sustainable way.  

To be competitive, software and technology providers must appreciate the importance 

of a client’s knowledge and organisational culture, of what sets the client apart from 

competitors and what the clients have learned to do, that is, their know-how. This 

knowledge, the key asset in company recognition, can be used to ascertain how 



successfully a client company is achieving their organisational goals. Company 

knowledge refers to the non-tangible resources that allow companies to deliver their 

value proposition (Marr, 2008). A company’s success is not guaranteed merely by the 

financial (money, credit, etc.) or physical assets (computers, buildings, etc.) that support 

its operations (Sanchez-Segura, Ruiz-Robles, et al., 2017). The vital resource of a 

knowledge-intensive company is intellectual capital, that is, its intangible knowledge 

assets. Thus, a company with better intangible knowledge assets has better prospects for 

long-term success (Andrews & De Serres, 2012; Axtle-Ortiz, 2013; Greco et al., 2013; 

Khan, 2014). 

The importance of considering knowledge assets as the key to developing solutions that 

meet a company’s business needs is illustrated by listing some of the leading companies 

in terms of economic and future prospects: Google, Amazon, Facebook or Apple.  

If we accept that business success increasingly depends on effective technological 

solutions, IT consultants and software engineers are more important than ever in helping 

companies achieve their business goals (by proposing appropriate software and 

technological solutions). Assuming this is the role of technology consultants or 

providers of software and technological solutions, what are the tools they use to 

demonstrate the potential impact of their proposed solutions for their clients? Currently, 

the assurances of experienced consultants or software engineers is deemed to be 

enough. But what if clients could visualise their near future and judge for themselves 

whether or not investing in a technological or software solution is worth it?  

A simulation tool used by technology consultants or software engineers to support their 

proposed solutions to the real needs of clients would be a powerful tool for decision-

making about the implementation of one or other software or technological solution. By 

visually demonstrating the evolution of a company’s knowledge assets, such a tool 



would allow clients to understand how good the proposed solution is likely to be in 

achieving their business goals. This approach offers a new way to navigate the current 

knowledge economy in which success depends on making the right decisions on the 

technology or software solutions used to exploit knowledge assets. 

The value of intangible assets in the software industry 

A relatively new field of research has focused on the value of intangible assets in 

technology companies. The starting point was the development of a taxonomy for 

identifying organisational intangible process assets in two small software services 

companies (Ruiz-Robles, 2017; Sanchez-Segura, Medina-Dominguez, et al., 2016). 

This research led to the development of a methodology to help stakeholders evaluate the 

health of an organisation based on its organisational process assets. For this, researchers 

proposed a number of key indicators and analysis of process assets based on their 

impact on business goals (Sanchez-Segura, Ruiz-Robles, et al., 2017). Additionally, 

agent-based and system dynamics simulations were carried out (Sanchez-Segura, 

Dugarte-Peña, & Medina-Dominguez, 2018; Sanchez-Segura, Dugarte-Peña, Medina-

Dominguez, et al., 2018). Researchers also proposed a biomimetic design of process 

assets based on concepts of natural intelligence and survivability, borrowing from 

swarm intelligence (intelligence of ant and honey-bee colonies) and identifying the 

features that both sets of process assets and individual process assets should have in 

order to operate intelligently and resiliently. Simulation modelling was used in this 

process (Sanchez-Segura, Dugarte-Peña, et al., 2017). This paper goes further, 

developing existing research by adopting the first decision-making model based on 

knowledge asset characterisation using simulation. This represents a paradigm shift. We 

are now developing a simulation model for use by software engineers as a decision-

making tool for clients from any sector where technological solutions are required. 



These solutions are based on the knowledge assets at the disposal of the client in the 

pursuit of its business goals. 

Decision-making in software services 

Two important references in software engineering are the guidelines Software 

Engineering Body of Knowledge (SWEBOK) and Project Management Body of 

Knowledge (PMBOK) (Bourque & Fairley, 2014; P.M.I., 2013). In this paper, we focus 

on the sections of SWEBOK and PMBOK dealing with the decision-making process for 

the services engineers offer their clients. However, decision-making is not a major 

subject of research in software engineering (Burge et al., 2008).  

The SWEBOK is the reference par excellence on software requirements, design, 

construction, testing, maintenance, configuration, management, engineering processes, 

models and methods, quality, professional practice, economics, computing foundations, 

mathematical foundations and engineering foundations. The Software Economics 

section of SWEBOK states that it “covers the foundations, key terminology, basic 

concepts, and common practices of software engineering economics to indicate how 

decision-making in software engineering includes, or should include, a business 

perspective” (Bourque & Fairley, 2014). However, most research refer to value-based 

decisions in terms of software process costs, effort and estimation, while no in-depth 

research has been done into the complexities of decision-making. Decisions are made 

by human beings and must be addressed as a complex problem (Sanchez-Segura, 

Jordan-Goñi, et al., 2016). 

From the perspective of software engineering, Burge and colleagues (Burge et al., 2008) 

focused on comprehending the decisions of software engineers as part of software 

engineering practice. They approach decision-making on a naturalistic basis (by 

humans) and how they can learn from considering the rationale as an output of human 



decision-making. However, an important point is that the trend has been to merely 

document the rationale for decisions rather than using it as a decision-making aid. 

We focus on taking advantage of naturalistic decision-making in the software 

engineering context to dynamically represent the features of decision-maker learning by 

cognitively modelling their decisions. 

Use of the instance-based learning (IBL) cognitive model for decision-making 

modelling 

Prior research has explored the implementation of instance-based learning theory 

(IBLT) in order to improve explicitness, transparency and preciseness (Gonzalez, 2017; 

Gonzalez et al., 2003; Gonzalez & Dutt, 2011). Cog-IBLT was the first computational 

model based on IBLT, focussing on demonstrating various mechanisms and the learning 

process for a resource allocation problem (Gonzalez et al., 2003). This paper draws on a 

broader experimental cognitive architecture ACT-R (Anderson & Lebiere, 1998) to 

model the concepts of activation (a value that identifies the potential usefulness of an 

instance based on memory, experience and relevance to a current context and 

environmental constraints); partial matching (the representation of the similarity 

between instances), and retrieval probability (the probability of an instance being 

retrieved according to activation and partial matching). Likewise, Lebiere (Lebiere, 

1998) presented the concept of blending (an aggregate of the values of multiple 

instances available in memory). 

Once IBLT was established as a formal theory of cognition, a number of models were 

created for various instance-based problems, focusing on highly complex, dynamic 

tasks (i.e. training, the effect of fatigue, etc.) (Gonzalez, Best, et al., 2011; Gonzalez et 

al., 2015; Gonzalez & Dutt, 2010), tasks related to skills acquisition through simple 

stimulus-response and repeated binary-choice tasks (Lejarraga et al., 2012). Although it 



is a descendent of ACT-R (Lebiere, 1998), the IBL model is representative mainly of 

ACT-R declarative memory and was successfully tested in modelling competitions 

(Erev et al., 2010; Gonzalez, Dutt, et al., 2011; Gonzalez et al., 2013). 

More recent uses of the IBL model and experience-based decision-making have 

primarily addressed distributed domains, ranging from decision-making models in 

energy-related interaction with buildings (von Grabe, 2017; von Grabe & González, 

2016), studies in behavioural science on the effect of switch rates or optional stopping 

in choosing between options based on expected rewards (Soo & Rottman, 2018), or 

human decision-making in autonomous vehicles (Govindarajan & Bajcsy, 2017).  

This paper analyses the use of the IBL model, using the NetLogo simulation tool, for a 

technological solution selection problem. The model and the learning mechanisms for 

decision-making are described in the Materials and Methods section below. The results 

of the use of the simulation model are presented in the Results section and the 

Discussion section analyses the accuracy of the model prediction compared to the real 

case. The final section offers conclusions and suggestions for future research. 

Materials and methods 

The most important decision in business technology or software is the choice of a 

solution from a number of technological alternatives. Simply put, the role of technology 

consultants and software engineers is to offer clients several alternatives to meet their 

business needs. In the software industry, before a software solution is deployed, the 

service provider (represented by the software engineer) is awarded a contract following 

business negotiations or a bidding process. 

This study offers a simulation model that can be used by software engineers to show 

their clients the effect of proposed software solutions, thus facilitating the decision-



making process. The aim of this model is to generate simulated scenarios to represent 

the client company’s health which, in the knowledge economy, refers to a company’s  

knowledge assets and their potential response to decisions on the implementation of a 

technological solutions. 

As an entry to the predictive simulation model that we propose in this work, a client 

company’s knowledge assets (also called intangible assets) must be assessed and 

measured. The SIPAC-maethodology (Systemic Intangible Process Assets 

Characterisation Framework) can be used to assess and measure the state of a 

company’s intangible knowledge assets based on its intellectual capital (Sanchez-

Segura, Medina-Dominguez, et al., 2016),  (Dugarte-Peña, 2019) and evaluate the 

company performance in terms of its organisational knowledge. To do this, a 

company’s intangible assets must be identified and categorised (Sanchez-Segura, 

Medina-Dominguez, et al., 2016), measured and characterised (Sanchez-Segura, Ruiz-

Robles, et al., 2017), modelled and simulated using technological simulation software 

(Sanchez-Segura, Dugarte-Peña, et al., 2017; Sanchez-Segura, Dugarte-Peña, Medina-

Dominguez, et al., 2018). Once the intangible assets have been characterized to reach a 

specific organization’s business goal, this is the entry to the predictive simulation 

model. However, to date there has been little research into the decision-making process 

involving both the software engineer and the client company. This decision-making 

process and the simulation model will be explored in this paper.  

We used a cognitive modelling approach (Anderson & Lebiere, 1998; Gonzalez et al., 

2003), specifically, the instance-based learning (IBL) model (Gonzalez, 2013; Gonzalez 

et al., 2003; Lejarraga et al., 2012; von Grabe, 2017) to represent how humans make 

dynamic decisions and select from different alternatives based on their perceived utility 

and previous experience (decisions from experience). The NetLogo (Wilenski, 1999; 



Wilensky, 2012) modelling and simulation tool was used to create the simulation 

model. 

Assessing and Characterising the Knowledge Assets State 

Before explaining the simulation model created, we are going to explain in this section, 

some details about how the entry to the simulation model is created. 

The SIPAC-framework (Dugarte-Peña, 2019; Sanchez-Segura, Dugarte-Peña, et al., 

2017; Sanchez-Segura, Dugarte-Peña, Medina-Dominguez, et al., 2018; Sanchez-

Segura, Ruiz-Robles, et al., 2017) encompasses a general assessment and 

characterisation of: 

• The achievement of a strategic goal 

• The knowledge assets of a company 

The achievement of a strategic goal is measured using the sum of the evaluation of all 

related knowledge assets and their importance in achieving the specific goal. A 

company’s knowledge assets are measured using key indicators identifying the quality 

of the assets and their impact on the achievement of strategic goals.  

Each knowledge asset is evaluated using one or several indicators that provide an 

overall assessment of the state of the asset. Similarly, a strategic goal may be assessed 

according to the various knowledge assets that may impact its achievement.  

The process is as follows:  

(1) Normalise and standardise indicators  

(2) Assess Indicators individually  

(3) Assess knowledge assets from their related indicator’s performance 

(4) Assess the achievement of strategic goals 



For this model to work, the knowledge assets and key indicators must be identified. The 

SIPAC-framework uses an audit spreadsheet (Dugarte-Peña, 2019)for direct on-site data 

collection and the on-line tool available at http://spaengineering.sel.inf.uc3m.es/, for the 

collection, storage and retrieval of information of a company’s strategic goals, 

knowledge assets and the corresponding indicators.  

The information required to identify a company’s knowledge assets is indicated in 

Table 1.  

<<<<<<<<< Table 1 here >>>>>>>>>> 

Just as knowledge assets are evaluated and given a weighting, indicators are also 

given a weighting depending on their impact on the assessment of a knowledge asset. 

For every indicator, a weight (𝑊𝐼𝑚
𝑛 ) is assigned according to the contribution of 

indicator “n” to the performance of the knowledge asset “m”. Table 2 shows the aspects 

to be identified and measured for each indicator of a knowledge asset. In general, these 

aspects describe the measurement criteria, differentiate an indicator from another, 

define whether they are representative of quality or impact, represent the importance of 

the indicator to the knowledge asset, and sets the boundaries within which the indicator 

may range. 

<<<<<<<<< Table 2 here >>>>>>>>>> 

Normalisation of Knowledge Asset Indicators 

With the information provided in Table 2 for every indicator, a double transformation of 

the indicator’s values is proposed in order to better combine the information and assess 

the indicators general performance: 

http://spaengineering.sel.inf.uc3m.es/


(1) A standardisation of actual and target values that comprises the transformation 

of the original actual and desired values to a scale [0,1] independently of the real 

range values.  

(2) A normalisation of every indicator that, from the standardised values generates a 

unique value representative of the state of health of the indicator. 

Standardisation of indicators 

The standardisation of actual and target values is given by the following equations and 

rules: 

• If the value “Sense” of an indicator equals 1, (the higher the value, the better the 

performance), then the standardised value of the indicator is as given in 

Equation 1. The value can be -1 or 1, meaning "lower is better" or "higher is 

better" respectively. For example, we can define 2 indicators: "number of 

positive ratings" and "number of negative ratings"; clearly the higher the number 

of positive ratings the better (higher is better) and the lower number of negative 

ratings (lower is better): 

𝑋′ =
𝑋−𝑋𝑀𝐼𝑁

𝑋𝑀𝐴𝑋−𝑋𝑀𝐼𝑁
∗ (1)           ( 1 ) 

Where 𝑋 represents the actual or target value of the indicator, and 𝑋𝑀𝐼𝑁 and 𝑋𝑀𝐴𝑋 

represent the minimum and maximum possible values, i.e. the possible range of the 

indicator.    

• If the value “Sense” of an indicator equals -1, (the lower the value, the better the 

performance) then the standardised value of the indicator is given as: 

𝑋′ =
𝑋−𝑋𝑀𝐴𝑋

𝑋𝑀𝐴𝑋−𝑋𝑀𝐼𝑁
∗ (−1)            ( 2 ) 



When all indicators are standardised, they will all be in a range [0,1], independently of 

their value, so they can all be compared as similar from a quantitative point of view.  

Normalisation of indicators 

As mentioned above, in addition to standardising the actual and target values of 

indicators, this work proposes a normalisation which, based on the actual and target 

value, computes the normalised value of the indicator, that is, the state of health of the 

indicator. This normalisation is given by Equation 3 and Equation 4. 

• If the value “Sense” of an indicator equals 1, (the higher the value, the better the 

performance), the normalised value of the indicator is given as:  

𝑋𝑁𝑂𝑅𝑀 =
𝑋𝐴𝑐𝑡

′ −𝑋𝑇𝑎𝑟𝑔𝑒𝑡
′

𝑋𝑇𝑎𝑟𝑔𝑒𝑡
′            ( 3 ) 

• If the value of an indicator equals -1, (the lower the value, the better the 

performance) then the normalised value of the indicator is given as:  

𝑋𝑁𝑂𝑅𝑀 =
𝑋𝐴𝑐𝑡

′ −𝑋𝑇𝑎𝑟𝑔𝑒𝑡
′

𝑋𝐴𝑐𝑡
′            ( 4 ) 

Where 𝑋𝑁𝑂𝑅𝑀 is the normalised value to calculate, 𝑋𝐴𝑐𝑡
′  is the previously standardised 

actual value, and 𝑋𝑇𝑎𝑟𝑔𝑒𝑡
′  is the previously standardised target value. This value ranges 

generally from – 1 to 1, although there may be cases of values overshooting or 

undershooting the limits of this interval. These are still valid and merely indicate values 

scoring higher or lower than the established interval limits1. 

 

1 For example, an indicator may have a reference interval of [5,20]. However, in some cases, an 

indicator may have values higher than 20 or lower than 5, which would result in standardised 

values higher than 1 or lower than -1. 



• A colour scale was created to illustrate these normalised values of the indicators, 

with upper and lower thresholds of the corresponding colour, Figure 1. 

<<<<<<<<< Figure 1 here >>>>>>>>>> 

Using this colour scale, it is easy to identify which indicators are in a poor (red), 

acceptable (orange) and good state (green). The state of the indicator is identified by the 

thresholds, determined by the client company and captured and applied by the IT/SW 

professional. 

Assessment of Knowledge Assets 

This consists in using the standardised-normalised indicators to assess knowledge 

assets. This assessment involves the generation of a quantitative value indicating the 

general state of health of the asset using Equation 5: 

𝐾𝐴𝑉𝐴𝐿
𝑛 = ∑ 𝑊𝐼𝑖

𝑛 ∗𝑚
𝑖=1 𝑋𝑁𝑂𝑅𝑀

𝑖            ( 5 ) 

Where 𝐾𝐴𝑉𝐴𝐿
𝑛  is the valuation of the knowledge asset “n”, which has “m” indicators, 

and with every normalised indicator 𝑋𝑁𝑂𝑅𝑀
𝑖  assigned a weighting representative of its 

importance of 𝑊𝐼𝑖
𝑛. 

Quantitative Assessment of a Strategic Goal  

The quantitative assessment of a strategic goal consists in taking all the individual 

valuations of the knowledge assets and calculating the state of achievement using  

Equation 6. 

𝑆𝐺𝑉𝐴𝐿 = ∑ 𝑊𝑘
𝑛
𝑘=1 ∗ 𝐾𝐴𝑉𝐴𝐿

𝑘            ( 6 ) 

The quantitative valuation of a strategic goal (𝑆𝐺𝑉𝐴𝐿) is the sum of the valuations of 

each knowledge asset, multiplied by their corresponding weighting.  



Quantitative Impact Assessment 

The impact of a knowledge asset is evaluated by taking into consideration the 

normalised indicators classified as “impact” indicators. The subset of impact indicators, 

given a set of “p” normalised impact indicators for a knowledge asset “n”, is evaluated 

using Equation 7:  

𝑰𝑽𝑨𝑳
𝒏 =

∑ 𝑿𝒊
𝒏𝒑

𝒊=𝟏

𝒑
           ( 7 ) 

Where 𝑋𝑖
𝑛 is each of the p normalised impact indicators of the knowledge asset n. 

Quantitative Quality Assessment 

As with the impact valuation, the quality valuation considers only the indicators of the  

quality of a knowledge asset. The subset of quality indicators, given a set of q impact 

indicators for a knowledge asset n, is evaluated using Equation 8. 

𝑸𝑽𝑨𝑳
𝒏 =

∑ 𝑿𝒊
𝒏𝒒

𝒊=𝟏

𝒒
            ( 8 ) 

Where 𝑋𝑖
𝑛 is each of the q normalised quality indicators of the knowledge asset n. 

The principal difference between these three valuations (general, impact or quality) is 

that the general weighting provides a quantitative value representing the state of the 

asset, regardless of whether this asset affects the impact on achieving strategic goals or 

related quality, but rather focusses on the overall importance of the indicators, whereas 

the impact and quality valuations are specific to these aspects regardless of weighting. 

This will be useful for the characterisation described in the following sub-section. 

Characterisation model for Knowledge Assets 

The characterisation of every knowledge asset in this methodology is based on the 

initial proposal by Sanchez-Segura (Sanchez-Segura, Dugarte-Peña, et al., 2017; 

Sanchez-Segura, Dugarte-Peña, Medina-Dominguez, et al., 2018; Sanchez-Segura, 

Ruiz-Robles, et al., 2017). This was expanded to include not only knowledge assets 



with both impact and quality, but those only of impact and only quality. This opens for 

consideration a wider range of possibilities for impact and quality combinations, all 

important in real organisational contexts. 

Knowledge Assets may be characterised in terms of their impact on a business goal and 

their quality as organisational assets. There are three cases for characterising knowledge 

assets based on the type of indicator:  

• Case 1: Knowledge assets with both impact and quality indicators (Warning, 

Replaceable, Evolving or Stable). 

• Case 2: Knowledge assets with only quality indicators (Acceptable or 

Unacceptable). 

• Case 3: Knowledge assets with only impact indicators (Acceptable or 

Unacceptable). 

These three cases are shown in Figure 2, case 1 in a grey frame, case 2 in yellow 

and case 3 in pink.  

<<<<<<<<< Figure 2 here >>>>>>>>>> 

As shown in Figure 2, there are several coloured quadrants representative of “states” 

that constitute the different levels of characterisation. The black segmented lines 

dividing the quadrants are the thresholds of impact and quality at which these may be 

considered acceptable or not. 

The characterisation thresholds define the values at which the quality and impact 

valuations switch from a bad or worse to a good or better and acceptable situation. In 

other words, these thresholds are barriers established by companies to define the 

performance goals for the quality and impact of their knowledge assets.   

There are eight possible states of characterization, grouped in three possible categories: 



With both Impact (I) and Quality (Q) indicators: 

These are assets containing indicators measuring both the impact on the strategic goal 

achievement and the quality of the asset itself. There are four characterization states in 

this category: 

• Warning Asset: Located in the red section of Figure 2, these assets are considered 

to be in a bad state since they do not overcome the stablished quality and impact 

thresholds. These assets must be carefully watched since they are threatens to the 

assets ecosystem and are having a negative general impact in organizational 

behavior, so important decisions about rescission or replacement must be made.   

• Replaceable Asset: Located in the orange section of Figure 2, these assets have 

good quality (more than the threshold) however the impact is not enough (less 

than the threshold). This means that these assets are worth to be replaced by assets 

with the same purpose but with a higher impact. 

• Evolving Asset: Located in the blue section of Figure 2, these assets have good 

impact (more than the threshold) however the quality is not enough (less than the 

threshold). This means that these are assets worth of receiving investment for 

improvement. 

• Stable Asset: Located in the green section of Figure 2, these assets have both good 

quality (more than the threshold) and impact (more than the threshold). It means 

that they are relevant and are supporting positively the strategic goal achievement. 

With only Impact (I) indicators: 

• Unacceptable Impact Asset: Located in the lower left side section, these assets are 

based only on impact indicators. For them, the impact measure does not overcome 

the threshold, which means that their effect on the system’s behavior is not enough 

significant. 



• Acceptable Impact Asset: Located in the upper left side section, these assets are 

based only on impact indicators. For them, the impact measure overcomes the 

threshold, which means that their effect on the system’s behavior is significant. 

With only Quality (Q) indicators: 

• Unacceptable Quality Asset: Located in the left lower side section, these assets 

are based only on quality indicators. For them, the quality measure does not 

overcome the threshold, which means that their effect on the system’s behavior is 

negative, so must improve. 

• Acceptable Quality Asset: Located in the right lower side section, these assets are 

based only on quality indicators. For them, the quality measure overcomes the 

threshold, which means that their effect on the system’s behavior is positive and 

are valuable. 

The re-characterisation of Knowledge Assets as a cognitive learning mimicking 

approach  

Since a knowledge asset is characterised at a determined moment, it is possible they can 

be in a different state at another moment. This is the case with knowledge assets that 

may be characterised in an audit as in one state but in a future audit be characterised in 

another state. This may be due to changes in organisational policy or a consequence of 

decisions made. 

As noted above, there are eight possible characterisations of knowledge assets. 

However, the following conditions must be considered: 

• A KA with both impact and quality indicators (Case 1) may be characterised as 

Warning, Replaceable, Evolving or Stable. 

• A KA with only impact indicators (Case 2) may be characterised as Acceptable 

Impact Asset or Unacceptable Impact Asset. 



• A KA with only quality indicators (Case 3) may be characterised as Acceptable 

Quality Asset or Unacceptable Quality Asset. 

The transition matrixes and state diagrams for these possible KA states can be 

represented as follows:  

Table 3 shows all transition matrixes for the Markovian process of KA  

characterisation. By definition, there are three clearly distinguishable cases possible: 

both impact and quality, only impact and only quality knowledge assets. The table 

shows the probabilities of transitions, while the others are shown as “-”. 

<<<<<<<<< Table 3 here >>>>>>>>>> 

The corresponding state diagram for the previous matrix is shown in Figure 3. There are 

8 possible states for a knowledge asset and the possible transitions are shown with black 

arrows. 

As it may be assumed, the characterisations are mutually exclusive, i.e. a 

knowledge asset may correspond to only one of these three cases, which is why the 

probability matrix only shows valid probabilities within each of the cases, while the 

other spaces remain disabled. 

<<<<<<<<< Figure 3 here >>>>>>>>>> 

In order to discover the real probability values of the transitional matrix, an experience-

based training was proposed, taking advantage of the information available from  

companies (case studies) that have used the SIPAC-framework and implemented the 

suggested digital solution.  

This matrix is generated by exploring each of the audits and identifying the 

probability of knowledge assets to be re-characterised when the first and second audits 

are compared. Figure 4 illustrates the process of exploring the cases available and 

updating the probability matrix. 



<<<<<<<<< Figure 4 here >>>>>>>>>> 

For every knowledge asset, the previous characterisation is identified as i, and 

the subsequent characterisation is identified as j; this identification corresponds to the 

ID column of Table 4. In order to obtain the probability matrix, first an occurrence 

matrix must be obtained by exploring the previous and subsequent characterisation 

states of every knowledge asset. 

<<<<<<<<< Table 4 here >>>>>>>>>> 

From this, the occurrence ( 𝑂𝑐𝑐𝑖
𝑗
 ) of a transition is defined as the number of 

times in which knowledge assets switch from the previous i state to the subsequent j  

state. The whole set of possible transitions is presented in Table 5. 

<<<<<<<<< Table 5 here >>>>>>>>>> 

From this the probability matrix can be broken down. For the re-characterisation 

probability matrix estimation to make sense, some restrictions must be considered: 

• Type 1 (both impact and quality) knowledge assets can only be characterised as 

1, 2, 3 or 4. 

• There is a considerable number of case studies = n1 + n2 + n1 + ⋯ + nn , each 

with a determined kn number of knowledge assets, summing up k = k1 + k2 +

⋯ + kn. 

• The total number of knowledge assets considering the total cases for training, 

corresponds to the total number of transitions of the occurrence matrix, so: 

•  𝑘 = ∑ ∑ 𝑂𝑐𝑐𝑖
𝑗8

𝑗=1
8
𝑖=1      

• For each case study we have two audits: previous and subsequent to the 

implementation of the suggested digital solution. 



Given n number of case studies, and for the occurrence matrix given before, for each 

known previous i state, the probability of transition to the j state is given by Equation 9. 

𝑝𝑖
𝑗

=
𝑂𝑐𝑐𝑖

𝑗

∑ 𝑂𝑐𝑐𝑖

            ( 9 ) 

The previous probability equation and the considered restrictions to the type of 

knowledge asset, quality or impact, allows us to determine the transitional probability 

matrix for the model of re-characterisation of knowledge assets, as shown in Table 6. 

<<<<<<<<< Table 6 here >>>>>>>>>> 

From the previous matrix, it can be said that a given knowledge asset previously 

characterised as 𝑖 can only be re-characterised as: 

• {1|2|3|4} 𝑖𝑓 (𝑖 = 1|2|3|4)  [i.e. the case of both quality and impact] 

• {5|6} 𝑖𝑓 (𝑖 = 5|6) [i.e. the case of only quality] 

• {7|8} 𝑖𝑓 (𝑖 = 7|8) [i.e. the case of only impact] 

Instances of IBL-model implementation: learning from experimentation as in 

cognition  

The instances definition 

The IBL (instance-based learning) model (Lejarraga et al., 2012) focuses on 

characterising the learning of dynamic tasks through instances stored in a “memory” 

representing the experience of decision making events. The instances considered in the 

dynamic decision-making process of the SIPAC-framework refer to the digital solution 

selection and are the trio defined to represent the memory of an expert “decision-maker” 

in the context of the implementation of a digital solution through the deployment of the 

SIPAC-framework. According to the IBL model, instances are composed of a situation 

“S”, a decision “D” and an obtained utility “U”. We describe the instances of the 

experience-based software solution selection problem below, emulating the process of 



decision-making with regard to the selection of a digital solution within an 

organisational context.  

The specific combination of Situation-Decision-Utility for the software selection 

problem is shown in Table 7. 

<<<<<<<<< Table 7 here >>>>>>>>>> 

Situation (S): In dynamic decision-making, according to the IBL model, the situation of 

an instance is defined by all the elements that describe a subsystem state any time a 

decision is made. These could be regarded as state variables that describe the subsystem 

at a given time and distinguish it from the subsystem state at another point in time. For 

the problem at hand, situation in the proposed model means a pair of states for each 

knowledge asset, a preceding one and a subsequent one. The KA state is determined by 

the characterisation of knowledge assets described above and based on the work of 

Sanchez-Segura et al.  (Sanchez-Segura, Dugarte-Peña, et al., 2017; Sanchez-Segura, 

Ruiz-Robles, et al., 2017), which may characterise each knowledge asset as evolving, 

stable, warning, replaceable, acceptable/unacceptable of only quality KA and 

acceptable/unacceptable of only impact KA. Since there are eight possible 

characterisation states for the knowledge assets and two transitional states (pre and post 

decision), a total of 42(type 1)+22(type 2)+22(type 3)=24 pairs of states are used to 

define the possible situations of these instances as the transition between two of these 

eight possible states, taking into consideration that knowledge assets of both quality and 

impact have four possible states,  while only impact or only quality knowledge assets 

have two possible states (see Table 7, above). For example, the situation of an instance 

could be the transition of a knowledge asset from Evolving to Stable after a decision is 

made. 



Decisions (D): The decision to be considered in this model is the selection of one of two 

alternatives: (A) Implement a technological solution suggested by the IT/SW 

professional as the best alternative to achieve the client’s business goal based on client 

know-how, or (B) Do not implement any change (see column 3 of Table 7). These 

decisions can be regarded as experience-based decisions (Gonzalez, 2013), since the 

decision-maker will discover the outcomes and their probabilities while addressing the 

stated problem with abstract tools and models, such as simulations.  

The IBL model is open to considering more than two decisions. As far as we are 

concerned here, it makes more sense to consider the real options open to the client 

company when it has to make a decision to meet its needs: whether or not to accept the 

IT/SW professional’s knowledge-based proposal. 

The decision made will result in significant and far-reaching changes to the client 

company, since big decisions entail big responsibilities. Irrespective of the decision 

made on whether or not to implement the technological solution, knowledge assets can 

mutate. Consequently, the state of the company’s knowledge assets can, according to 

this model, change, leading to a chain reaction within the company. Accordingly, the 

company can, for example, be more sustainable (among other benefits) the better the 

state of the knowledge assets. It is not currently possible to predict the evolution of a 

company with respect to a change in the state of its knowledge assets. Therefore, the 

aim of the proposed model is to predict the impact of the implementation of a software 

or technological solution proposed by a software engineer on the state of the client 

company’s knowledge assets. 

Utility (U): Generally speaking, utility (U) can, according to the IBL model, be 

regarded as the outcome of making a decision D in the situation S. For the digital 

solution selection problem, utility is determined by the difference between the revenue 



of a business case in the previous audit and the revenue in the subsequent audit, i.e., 

given the previous (𝐼𝑝) and subsequent (𝐼𝑠) revenues of a company, the utility (𝑈) of its 

related instances is defined by Equation 10. 

𝑼 = ∆𝑰 =
𝟏𝟎𝟎∗𝑰𝒔

𝑰𝒑
− 𝑰𝒑            ( 10 ) 

The decision-maker is for determining which decision to make, i.e., the chief 

information officer, the chief executive officer, the IT director, etc. Company success is 

reflected in the characterisation of its knowledge assets: a good decision will result in 

better knowledge assets, and a bad decision will not lead to changes or will degrade 

knowledge assets. Ultimately, this will have a direct impact on organisational profit. In 

this model, utility is defined as the difference (as a percentage) of a company’s revenue, 

explained by Equation 9, resulting from strategic decisions and how these impact each 

knowledge asset and, ultimately, company profits. 

For the decision-maker, this instance-based learning model the utility is expected to 

represent the effect of decisions, which is why good decisions are expected to generate a 

positive higher utility (reward), and bad decisions are expected to generate a poor or 

even negative utility (punishment).  

Assuming that several case studies used the SIPAC-framework, a generic utility 

matrix can be obtained, similar to the occurrence or probability matrixes previously 

presented. This generic utility matrix is an estimation of the effectiveness of the SIPAC-

framework in improving organisational knowledge assets from the implementation of 

digital solutions specifically aligned with strategic goals.  Table 8 illustrates the generic 

utility matrix; which will be more precise the more cases that are used. 

<<<<<<<<< Table 8 here >>>>>>>>>> 

According to Table 8, the utility for a knowledge asset previously characterised as 

evolving and subsequently characterised as stable is RE-S should correspond to a specific 



variation in a company’s revenue; however, it may be representative of other forms of 

utility that can be measured and compared, thus enabling the generation of a difference, 

or ∆𝐼. 

If 𝐶𝐻𝑡 = 𝐸 and 𝐶𝐻𝑡+1 = 𝑆, then 𝑅(𝐸𝑣𝑜𝑙𝑣𝑖𝑛𝑔 → 𝑆𝑡𝑎𝑏𝑙𝑒) = 𝑅𝐸−𝑆. 

Let us suppose, for example, that a knowledge asset has been characterised as evolving 

and is re-characterised as stable as a result of the decision to implement technological 

solution X, and the revenue variation between before and after the decision is 120%. 

The instance could be defined as:  

• Situation (S) = Evolving→Stable 

• Decision (D) = Implement technological solution X 

• Utility (U)= 20. 

Re-characterisation of Knowledge Assets as a learning-based process according 

to the IBL-model 

In this proposal, the technology selection decision-making process is conceived as a 

dynamic process from the perspective of the Instance Based Learning theory, shown in 

Figure 5.  

The IBL-model has been widely used to represent several types of decisions, as 

noted in the introduction, but we have used it to represent the dynamics of a very 

different kind of decisions: strategic decisions with regard to digital solution 

implementation. While frequently used to represent trivial decisions, our research 

proposes to mimic these cognitive processes, aiming to design a method to explore and 

evaluate choices before making decisions, first using a simulated model but finally 

using real decision making. 

<<<<<<<<< Figure 5 here >>>>>>>>>> 



This process of decision-making using the IBL-model is best understood by explaining 

the subprocesses of the decision-making learning process implicit in the implementation 

shown in Figure 5 above, based on instances with trios of information about experiences 

including a situation (S), a related decision (D) and the utility obtained (U). 

Recognition 

Experience-based decisions in any field depend on repeated decisions, trial and error. 

This can be extremely expensive and unaffordable in a technological context given that 

the implementations of software and digital solutions is expensive. Generally, only 

highly paid consultants, consultancy firms and very skilled decision-makers have the 

experience required to choose between technological solutions. When tens of thousands 

or even millions of euros are at stake, a talented decision-maker with experience in 

making similar risky decisions and achieved good outcomes will be required to make 

the choice between two or more alternatives. Therefore, it is necessary to account for 

previous experiences in the choice of digital solutions. These experiences represent 

instances, including information on decisions made under similar conditions; instances 

that are used when needed as a result of an expert ability to connect and correlate 

situations and variables by similarities. 

The instances refer to or contain information on how decisions on technological 

solutions have been made in the past but are not easily accessible. Decision-making 

based on this is potentially very useful but based on a paradigm that we believe should 

evolve towards a decision-making approach that is closer to the client’s reality, that is, 

more clearly linked with the client’s business needs.  

We propose a perspective shift with respect to how software engineers make decisions 

about the most suitable technological solution for a client. Clients have business goals 

and are very aware that achieving these will guarantee survival. Any action taken by the 



company, including of course, the choice of technological options, must be based on the 

client’s business goals and know-how. This leads to the question of how a software 

engineer can demonstrate that the proposed solution is aligned with the client’s business 

goals. The purpose of the model proposed here is to provide the client with evidence of 

why the proposed solution aligns with both its know-how and its business goals.  

Based on memories of decisions and situations producing company know-how and 

business goal alignment, recognition is represented in this simulation model by the 

characterisation of knowledge assets. Simulation modelling will explore all possibilities 

and create memories that are impossible to investigate in real life, building a set of 

references that can be queried when a new decision has to be made and an experienced 

opinion is required.  

Judgement 

Judgement involves evaluating the expected utility of alternatives based on experience 

or heuristics (Gonzalez, 2017). This decision-making model will judge between 

alternatives based on simulated experiences that previously explored the alternatives 

and their related situations, decisions and utility.  

Experienced decision-makers routinely do this intuitively when they look to memory 

and experience to compare environments, special conditions and user needs. The 

process activates memories to recall what the results (outcomes) of each alternative 

would be. Our model implements this cognitive subprocess by storing and comparing 

simulated instances (experiences) that represent the decision-maker’s memories 

previous results of the alternatives at hand. For each pair of alternatives, this model uses 

a blending mechanism to estimate which option is best. Given that each instance will be 

associated with one of two decisions, and each of the instances has an associated utility, 



the dominant (higher) average utility will define the blended value for each of the 

decisions. This will determine the best of the two alternatives. 

For example, the state of a company’s knowledge assets (warning, evolving, replaceable 

or stable) may have changed as a consequence of simulated decisions. In the 

hypothetical scenario that a company’s knowledge asset switched from warning to 

stable as a consequence of implementing a software or technological solution, the 

company’s defined utility is expected to be very good. It will, in any case, be better than 

for the again hypothetical scenario in which another technological solution for the same 

company failed to change the state of the knowledge asset from warning or slightly 

improved its state to replaceable. 

Choice 

The act of choice consists of selecting the best alternative based on the above 

judgement. Thanks to the judgement subprocess, the decision maker can create a 

criterion for selection based on the expected utility, i.e., the highest blended value. The 

simulated model compares the results based on experiences with all of the alternatives 

under evaluation (two in our case, see column 2 of 8). It then selects the alternative 

decision that is expected to yield the best possible outcome as the best choice. In this 

model, the decision criterion is denoted by the blended value, an IBL model artefact that 

calculates a value for each of the choices as a function of activation and results. 

Execution 

The execution subprocess is the implementation of the selected decision, or, in other 

words, the implementation of the technological solution that the model considers best to 

satisfy the client’s needs. In industry, technological solutions are deployed with or 

without the intervention of the expert. Large companies have their own personnel with 



experience in deploying technological solutions who receive dynamic feedback and 

supervision. In small- and medium-sized companies, however, the consulting role is 

mostly performed by an expert who is paid an hourly rate for evaluating the situation, 

advising on decision making and providing feedback after implementation. Execution in 

this simulated model is determined by the company’s knowledge asset transition 

probabilities.  

Good or bad decision-making on software solutions would, in real life, entail high 

financial and performance risks that not every company can afford. Through simulation 

modelling, however, a company can experiment without risk, while gaining valuable 

knowledge that will support decision-making and provide a general understanding of 

company dynamics. 

The effect of implementing a solution at a client company will be represented by the re-

characterisation of intangible assets as a result of solution. This in turn depends on the 

pre-calibrated probabilities of transition determined for each client organisation, i.e., a 

company with a better maturity level will be more likely to re-characterise its 

knowledge assets after the deployment of an appropriate software solution. 

Feedback 

The feedback subprocess consists of updating the utility of an instance according to its 

activation based on several experiences. Although the transition will be determined by a 

transition probability matrix, there is little probability of counterintuitive selection in 

simulation modelling. Accordingly, the model can fully explore all the possibilities and 

update the utility based on the better choices. 

The learning mechanism is implemented in any IBL model through a feedback loop. If 

the model is to be truly dynamic, a learning process should be enacted for each of the 

experiences. In this model, after an experience has been gained, the related instance  



stored in memory is updated. Formally, feedback entails selecting the instances to be 

reinforced and the rate of reinforcement of the utility of these instances (Gonzalez, 

2013). 

In this model, the activation parameter of an instance agent, and its expected 

utility, is updated as part of the feedback. The pool of instances available for 

comparison at the time of the memory query is then updated to give a clear picture of 

the best and worst instances. The model thus chooses the alternative that would produce 

the best outcome. Since the decision-making process is simulated repeatedly, the impact 

of recognising and updating the instances as representative of better and worse rewards 

is very useful for both the software engineer (who can demonstrate the benefits of good 

decision-making, increasing the probabilities of winning a contract) and the client (who 

can foresee the benefits to the company). 

Implementation of learning mechanisms through simulation models  

As part of this decision-making process, there are several mechanisms enabling the 

learning process, including the Smart Decision-Making Module.  

The learning mechanisms represented in this model were presented firstly as part of the 

ACT-R cognitive architecture, and secondly as part of the IBL model. The most 

representative mechanisms are described below. 

Pre-population 

In view of the complexity of these situations, involving a transition between states, all 

the options need to be considered to begin with. For this, a pre-population of agents 

(instances) is initially deployed. The pre-population process consists in creating all 

possible decision-making instances. For this, all the pre and post characterisation states 

should be considered. Given that there are 44 possible transitions between before (PRE) 



and after (POST) characterisation and two possible decisions (ND), the number of initial 

instances will be determined as follows: 

Number of initial instances: 

𝑁 = 𝑁𝐷 ∗ 𝑃𝑅𝐸𝑃𝑂𝑆𝑇 = 2 ∗ 44 = 32 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. 

Blending 

The blending mechanism is inspired by blending as proposed by Lebiere 

(Lebiere, 1999). It is used to assess the attractiveness of different alternatives based on 

previous outcomes. Given that the simulation model is used to carry out several 

experiments, instances saved in memory contain attributes that can be used to compare 

the alternatives. In the particular case of the software selection problem, the comparison 

is carried out as a selection model based on the blended values calculated for each of the 

choices. In previous experiences, all the choice options and outcomes will have been 

saved as instances. The best option will represent the decision (A or B) with the greatest 

expected utility (reward) based on previous experiences. 

Results: use of the simulation model 

The framework suggests the use of a simulation model in two stages: first, using a 

module that automatically characterises knowledge assets in a graphical agents-based 

interface; and second, using a module aimed at representing the predicted impact of the 

SIPAC-framework proposal may have on knowledge assets (See Figure 6). This 

evolution is based on an IBL-model representation of dynamic decisions. Both 

simulation modules become an input for decisions to be made in the real organisational 

context. 

<<<<<<<<< Figure 6 here >>>>>>>>>> 



Module for visualising the entry to the simulation model: characterised 

Knowledge Assets 

By using this agents-based model, the IT/SW professional can automatically represent 

and visualise the previously characterised knowledge assets of a company. To do so, the 

model handler (i.e., the IT/SW professional or company management) has several 

alternatives: 

• To select from preloaded cases a specific case characterisation. 

• To upload a csv file with information of a new case and characterise its 

knowledge assets. 

The model handler can also set the impact and quality thresholds that define the 

characterisation, that is, the values of standardised quality and impact valuations, so that 

the characterisation may be more or less flexible within the thresholds. 

It is important to note that this characterisation has been described as “static” since it 

represents the state of knowledge assets at the time the previous audit. This following 

strategic questions may be considered:  

• How would the knowledge assets be characterised if they were in a better state? 

• How would they be re-characterised if we decision-makers were more flexible 

(configuring lower impact and quality thresholds) or more demanding (higher 

impact and quality thresholds). 

• What does it mean that most of knowledge assets are characterised as stable or 

warning. 

• What assets do we need to focus on to improve the impact on strategic goals? 

• What assets are in the best state, to be used as levers or inputs for improvement? 



The control panel for visualisation of the characterisation, shown in Figure 7 (left), 

allows the IT/SW professional to visualise the previously characterised knowledge 

assets of a client company. This control panel guides the IT/SW professional through 

four general steps to characterise knowledge assets: 

• Step 1: Reset stored information and load data 

• Step 2: Data loading mode selection and operation 

• Step 3: Simulation World Configuration 

• Step 4: Knowledge Assets Characterisation 

Figure 7 (right) shows the simulated world in which the knowledge assets will coexist 

and be characterised according to their impact and quality. As shown, the 

characterisation is given by the area in which the knowledge assets are located in a 

determined moment.  At this point, the characterisation is static, that is, represents the 

real values of indicators of every knowledge asset. 

<<<<<<<<< Figure 7 here >>>>>>>>>> 

The second module of the simulation model is used to provide a dynamic 

representation of the evolution of knowledge assets,  

Module for learning-based prediction of the evolution of Knowledge Assets 

This work integrates an application of the IBL-model since it was appropriate for 

representing the difficult task of exploring alternatives and comparing them based in 

their outcomes. Additionally, the whole learning process of the IBL-model (a strong 

theoretical model) was used since it represents the way that cognitive memory works, 

providing this work with an approach for representing smart decision making, as is 

shown in the following section. 



This module allows the evolution of a company’s knowledge assets to be predicted 

using the information of previous cases as a general reference. Essentially, this 

simulation model trains instances through trials, following these steps: 

• Recognises the instances associated to the business case under study 

(Recognition of the IBL-model). 

• Judges between two alternatives, i.e., it explores what has occurred in the past 

with knowledge assets with similar characterisation states when the digital 

solution was implemented (Judgement of the IBL-model). 

• Makes a choice, guided by the best expected utility for each alternative (Choice 

of the IBL-model). 

• Re-characterises (as a prediction) the knowledge assets, using the probabilities 

obtained from the real previous cases experimentation (Execution of the IBL-

model). 

• Updates the information of the instances (situation, decision and utility) with 

the obtained re-characterisation information (Feedback of the IBL-model). 

An example of how the prediction looks is shown in Figure 8. Instances related to 

decision A (Implementing a digital solution) are represented as black circles, while 

instances related to decision B (not implementing a digital solution) are represented 

with beige circles. The approximation of the instances represents the usefulness and 

occurrence of each instance, i.e. instances which are closer have been used more often 

and represent a higher utility value. The blended value represents the merit of the 

alternative choice. In this case, the blended value of decision A is higher than the 

blended value of decision B, thus, A would be the best decision. 

<<<<<<<<< Figure 8 here >>>>>>>>>> 



Apart from the best predicted decision, this model shows the dynamic re-

characterisation for each trial. In Figure 8, assets 1 and 5, initially characterised as 

Warning are re-characterised as Stable. Knowledge Assets 2, 3 and 4 moved from 

Warning to Replaceable. Asset 6 remained unchanged. 

Training from real cases data 

The experience implementing digital solutions and the effect of these on knowledge 

assets was measured using real case studies from 11 small and medium enterprises. The 

companies belonged to different sectors  but all had a common need: to improve their 

business performance through a digitalisation strategy or solution.  

Organisational knowledge, know-how itself, is complex. In this experiment, it was 

possible to work with small and medium organisations, which were more likely to share 

their experiences and showed more interest in knowledge-based improvements to 

become more competitive with minimum risks. The complete list is shown in Table 9. 

<<<<<<<<< Table 9 here >>>>>>>>>> 

These cases were used to train the model, since for every company there were 

two knowledge audits: one initial with the base information of knowledge assets, and 

one performed after the implementation of the digital solution. This information was 

used to generate the Matrix of Probabilities for Knowledge Asset Transition from one 

state to another, used in the re-characterisation of assets in the simulation model. 

Brief description of the real case used for validation 

In this research, we used information from an organization to test the accuracy of 

the simulation model at predicting the behaviour of the knowledge assets after the 

implementation of a digitisation strategy. The selected organization (name hidden 



attending nondisclosure agreement directions) is a public institution with the goals 

of: 

• Creation of multidisciplinary scientific teams that generate knowledge 

appropriate to the complexity of the problems related to the safety of 

motor vehicles. 

• Dissemination of the work carried out by the affiliated research teams.  

• Formation of scientifically based opinion in relation to the lines of 

research and technological development. 

• Creation of a channel of communication and exchange of opinion between 

specialists in the lines of research of the institution with other institutions 

related to the automotive sector. 

This is a small institution with 50-60 workers. These have varied professional 

profiles: senior and junior researchers, technicians, administrative assistants, 

interns, students and visiting researchers. Among the services provided it can be 

mentioned:   

• Auditing and evaluation of risks and safety in the automotive field. 

• Developing collaborative knowledge related to risk prevention and safety culture 

in the automotive field. 

• Setting policies for continuous improvement of risk prevention in the 

automotive sector. 

After the first knowledge assets assessment, and as a result of such assessment, 

the digital strategy proposed and implemented in this institution was the 

“Implementation of an open-source web platform containing a cloud-based knowledge 

repository, a knowledge-sharing incentivization module and a private/public interface 



for web diffusion”. The next sections explore the results and quality of the prediction 

made. 

At the moment of publishing this research, a third audit was being deployed to 

evaluate the long-term success of the implemented solution, which will probably 

redound in future policy changes and the proposal of new and updated technological 

solutions more appropriate for the expectedly evolved current knowledge assets. 

Knowledge Assets evolution prediction 

The main use of the simulation model is to estimate how knowledge assets may evolve 

as a result of decisions for the implementation of technological solutions. An example 

taken from a real case prediction is provided below. Figure 9 shows three specific views 

of the simulation window: First, the characterisation of the knowledge assets in the 

initial audit; Second, the prediction of the simulation model based on previous real 

cases. Third, the real characterisation of the knowledge assets in the second audit (after 

the implementation of the digital solution). 

<<<<<<<<< Figure 9 here >>>>>>>>>> 

It is important to take advantage of the simulation model to improve decision 

making. By comparing the previous figure’s characterisations, it is possible to have an 

idea of the accuracy of the simulation engine, since we can compare the prediction with 

the real characterisation made after the implementation of a solution. The accuracy of 

these predictions is discussed below.  

 



Discussion: on the accuracy in a real case  

Figure 10 shows the predicted and real characterisation of a knowledge asset before and 

after the implementation of the digital solution.  As can be seen, in five out of seven 

cases the prediction was correct. 

To test the efficacy of the simulation, the prediction must be compared with the real 

results of the characterization for this specific case.  

As it may be seen, in most of the characterizations of knowledge assets obtained (5 out 

of 7), the prediction coincided with the real characterization. Specifically, knowledge 

assets identified as 2, 3, 4, 5 and 6 are recharacterised exactly as suggested by the 

simulation model. 

In the case of knowledge asset 1, the prediction failed, since it expected this asset to be 

recharacterized as “Stable” but it only achieved an “Evolving” state. This may be 

explained by the insufficient improvement in the quality assessment for such an asset. 

There was a significant improvement in such quality, going from -0.2 to 0.1, however, 

this improvement needed to achieve a value higher than the defined quality threshold 

(0.15) to be characterized as “Stable”, so with the current conditions the re-

characterization was not possible.  

However, the discussion is possible about how far the original quality valuation was, 

and the significant improvement achieved, which remains to be a good indicator for the 

effectiveness of the SIPAC-framework’s suggested solution, which was the simulated 

scenario. 

In the case of the knowledge asset identified as 7, the simulation predicted improvement 

in both the quality and the impact valuations, so that it was expected to be re-

characterized as Stable. However, the real re-characterization showed such an asset as 

Replaceable, with no change in characterization state. This may be explained by the 

extremely bad state of the initial impact valuation that the knowledge asset had before 



the implementation. The initial impact valuation was -0.36, which is far from the 

established impact threshold of 0.1. Although there was an improvement in such impact, 

going from -0.36 to 0.03, this improvement was not enough to overcome the threshold 

which was established at 0.1, however, as in the previous case, the effectivity of the 

SIPAC-framework may be discussed, given that the improvement occurred. 

In cases where the prediction was not correct this was due to the configuration of the 

simulation model itself. In the first prediction failure, the corresponding knowledge 

asset was originally evolving. As such, it needed to improve on quality to become 

stable. Although quality improved, -0.2 before implementation and 0.1 after, this 

improvement was not enough for a re-characterisation of the asset. Given that the 

quality threshold was set at 0.15, improvement needed to be at least 0.35 and only 

reached 0.3; this, while insufficient, was not necessarily a poor outcome. It may be 

supposed that over time this asset may become stable. 

<<<<<<<<< Figure 10 here >>>>>>>>>> 

There was a similar occurrence with the other asset which was not re-

characterised as predicted. The improvement was expected to be at least 0.46 to 

overcome the impact threshold (set at 0.1); although it improved from -0,36 to 0,03, this 

was not enough for re-characterisation.  

Conclusions and future work 

Digital technologies are now an essential part of our world, and the digitalisation of 

modern organisations is not merely a trend but rather a critical need to succeed in a 

global world of increasingly complex and dynamic environments for which traditional 

decision-making techniques is inadequate. 



 This paper offers an additional input to the limited set of tools and approaches that 

software engineers and business management have to support decision-making in 

selecting a technology solution or digitalisation strategy.  

Beyond providing a visual tool for improved decision-making, this work presents a 

cognitive model that mimics the way that organisations learn from experience to 

improve decision-making. Specifically, this proposal implements a process of learning 

based on decisions on the implementation of technological solutions, using a simulated 

cognitive approach to evaluate alternatives rather than using the traditional methods 

based on reputation or cost, and focusing on real success in previous cases, even when 

the best alternative was to reject the proposed technological solution.  

Through the development and use of the proposed simulation model, we were capable 

of emulating the process of deciding to implement or not a digitalization strategy based 

on previous experiences and using this expertise to project and predict the potential 

outcomes of the digitalization process. 

For the professionals, the impartial judgement the model provides is crucial. The 

simulator is able to evaluate the experience of different companies providing 

technological services, and on this basis (previous services and experience) measure and 

assess past performance and so predict the success of a new endeavour in designing a  

digital strategy or proposed technological solution.  

Finally, it should be noted that this work is valuable not only in the field of software 

engineering but also in cognitive modelling more broadly, expanding the scope of 

application by bringing its theoretical conception, the IBL (Instance-based Learning) 

model. It offers a useful and transparent user-centred application for learning with many 

advantages for final users who can make decisions based on experience without putting 

at risk what is most important: the client’s business success. 
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Tables 

Table 1. Information of Knowledge Assets used in the assessment model. 

Short-ID Extended-ID Description 

KA-Name The name of the 
Knowledge Asset. 

This should be a short and representative name of the 
knowledge asset. 

IC-type Type of Intellectual 
capital. 

This type of intellectual capital must correspond to the 

classification of (Marr, 2008). 

KA-type Type of knowledge 
asset. 

This type of generic knowledge asset corresponds to 
the classification presented in section Materials and 
Methods section.  

N-Ind Number of indicators This is the number of indicators that a specific 
knowledge asset has. 

KA-weight Weight of the 
knowledge asset 

This is the weight (importance) that the knowledge 
asset has for the organisational strategic goal 
achievement. 

  



Table 2. Elements of a Knowledge Assets Indicator. 

Short-ID Extended-ID Description 

Name The name of the 
indicator. 

This should be a short and representative name 

Type The type of 
indicator 

It must take two possible values: (1) the indicator is of Quality 
type, and (2) the indicator is of Impact type. 

Min_Val Minimum possible 
value 

This is the lowest possible value of the indicator. In other words, 
it is the lower limit of the interval of possible values. 

Max_Val Maximum possible 
value 

This is the highest possible value of the indicator. In other 
words, it is the higher limit of the interval of possible values. 

Sense Sense of goodness This represents the desired direction of the indicator. If higher 
values are better, it takes a value of 1, and if lower values are 
better it takes a value of -1. 

Act-Val Actual value of the 
indicator 

This represents the current state of the indicator, i.e. it is a value 
higher or equal to Min_Val and lower or equal to Max_Val. In 
other words, it is the measure of the indicator in the present 
time. 

Target_Val Target value of the 
indicator 

This represents the desired state of the indicator, i.e. it is a value 
higher or equal to Min_Val and lower or equal to Max_Val, but 
representative of a better state (if possible) than the Act_Val. In 
other words, it is the desired measure of the indicator in the 
future. 

Ind-
Weight 

The weight 
(importance) for the 
knowledge asset. 

This represents the importance of the indicator regarding the 
knowledge asset. The higher this value, the more important it is. 
(Note: importance is distributed among all the indicators of the 
asset; all weights of indicators of a same knowledge asset must 
total 1) 

 

  



Table 3. Markovian transition matrix. 
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Pre 

Stable P11 P12 P13 P14 - - - - 1 

Evolving P21 P22 P23 P24 - - - - 1 

Replaceable P31 P32 P33 P34 - - - - 1 

Warning P41 P42 P43 P44 - - - - 1 

Unacceptable Quality Asset - - - - P55 P56 - - 1 

Acceptable Quality Asset - - - - P65 P66 - - 1 

Unacceptable Impact Asset - - - - - - P77 P78 1 

Acceptable Impact Asset - - - - - - P87 P88 1 

 

  



Table 4. Identification of characterisation cases. 

ID Case Characterisation 

1 1 Stable 

2 1 Evolving 

3 1 Replaceable 

4 1 Warning 

5 2 Unacceptable Quality Asset 

6 2 Acceptable Quality Asset 

7 3 Unacceptable Impact Asset 

8 3 Acceptable Impact Asset 

  



Table 5. Occurrence matrix from training. 
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P

re
vi

o
u

s 
C

h
a

ra
c
te

ri
sa

ti
o

n
 S

ta
te

 

 1 2 3 4 5 6 7 8 ∑ 𝑂𝑐𝑐𝑖 

1 𝑂𝑐𝑐1
1 𝑂𝑐𝑐1

2 𝑂𝑐𝑐1
3 𝑂𝑐𝑐1

4 0 0 0 0 ∑ 𝑂𝑐𝑐1 

2 𝑂𝑐𝑐2
1 𝑂𝑐𝑐2

2 𝑂𝑐𝑐2
3 𝑂𝑐𝑐2

4 0 0 0 0 ∑ 𝑂𝑐𝑐2 

3 𝑂𝑐𝑐3
1 𝑂𝑐𝑐3

2 𝑂𝑐𝑐3
3 𝑂𝑐𝑐3

4 0 0 0 0 ∑ 𝑂𝑐𝑐3 

4 𝑂𝑐𝑐4
1 𝑂𝑐𝑐4

2 𝑂𝑐𝑐4
3 𝑂𝑐𝑐4

4 0 0 0 0 ∑ 𝑂𝑐𝑐4 

5 0 0 0 0 𝑂𝑐𝑐5
5 𝑂𝑐𝑐5

6 0 0 ∑ 𝑂𝑐𝑐5 

6 0 0 0 0 𝑂𝑐𝑐6
5 𝑂𝑐𝑐6

6 0 0 ∑ 𝑂𝑐𝑐6 

7 0 0 0 0 0 0 𝑂𝑐𝑐7
7 𝑂𝑐𝑐7

8 ∑ 𝑂𝑐𝑐7 

8 0 0 0 0 0 0 𝑂𝑐𝑐8
7 𝑂𝑐𝑐8

8 ∑ 𝑂𝑐𝑐8 
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Table 6. Transitional probability matrix. 
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4 0 0 0 0 1 
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3 𝑝3
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1 𝑝4

2 𝑝4
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4 0 0 0 0 1 

5 0 0 0 0 𝑝5
5 𝑝5

6 0 0 1 
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5 𝑝6

6 0 0 1 

7 0 0 0 0 0 0 𝑝7
7 𝑝7

8 1 

8 0 0 0 0 0 0 𝑝8
7 𝑝8

8 1 

 

  



Table 7. Structure of an instance: situation, decision and utility. 

 Instances 

Situation (S) Decision (D) Utility (U) 

Transition from the “PRE” characterisation state to the “POST” 

characterisation state 

PRE→POST 

Decision to be made 

by the decision maker 

in the given situation 

(S) 

Percentage 

revenue 

variation from 

the first to the 

second audit: 

after making 

the decision 

(D) in the 

situation (S) 

Type 1: 

both 

impact 

and 

quality 

Warning→ Warning 
 

 

 

A: Implement a 

specific 

technological 

solution aligned 

with the client’s 

business goal and 

supported by client 

know-how 

 

 

 

 

B: Do not 

implement any 

change at the 

company 

 

 

 

 

 

 

 

 

 

 

 

 

%  

Revenue 

Variation 

Warning→ Evolving 

Warning→ Replaceable 

Warning→ Stable 

Evolving → Warning 

Evolving → Evolving 

Evolving → Replaceable 

Evolving → Stable 

Replaceable → Warning 

Replaceable → Evolving 

Replaceable → Replaceable 

Replaceable → Stable 

Stable → Warning 

Stable → Evolving 

Stable → Replaceable 

Stable → Stable 

Type 2: 

only 

quality 

Unacceptable Quality Asset → Unacceptable Quality Asset 

Unacceptable Quality Asset → Acceptable Quality Asset 

Acceptable Quality Asset → Unacceptable Quality Asset 

Acceptable Quality Asset → Acceptable Quality Asset 

Type 3: 

only 

impact 

Unacceptable Impact Asset → Unacceptable Impact Asset 

Unacceptable Impact Asset → Acceptable Impact Asset 

Acceptable Impact Asset → Unacceptable Impact Asset 

Acceptable Impact Asset → Acceptable Impact Asset 

 

  



Table 8. Reward/Punishment (utility) for knowledge assets characterisation transition. 
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t)
 Stable (S) RS-S RS-E RS-R RS-W -- -- -- -- 

Evolving (E)  RE-S RE-E RE-R RE-W -- -- -- -- 

Replaceable (R) RR-S RR-E RR-R RR-W -- -- -- -- 

Warning (W) RW-S RW-E RW-R RW-W -- -- -- -- 

Acceptable Quality Asset -- -- -- -- RAQ-AQ RAQ-UQ -- -- 

Unacceptable Quality Asset -- -- -- -- RUQ-AQ RUQ-UQ -- -- 

Acceptable Impact Asset -- -- -- -- -- -- RAI-AI RAI-UI 

Unacceptable Impact Asset -- -- -- -- -- -- RUI-AI RUI-UI 

 

  



Table 9. List of companies used for training and validation. 

ID Company Ambit Location 

A 

ISVA- Duque de Santomauro Institute for Vehicle Safety Innovation, Research and Development Spain 

B EXA.PE Software development Peru 

C ETIPS.CL Software development Chile 

D VicMicro S.L. Technological and Digital services Spain 

E Tejados Ruiz S.L. Construction Spain 

F Grochel-MARKETING Soluciones Constructivas S.L. Construction Spain 

G Grochel-FORMATION Soluciones Constructivas S.L. Construction Spain 

H Pymeconsult Professional services Spain 

I Gráficas Mafra, S.L. Graphic Art Spain 

J CERAMA, S.L. Construction Spain 

K URIX Construction Spain 

 

  



Figures 

 

Figure 1. Colour of standardised KA indicators from the low and high thresholds. 

 

 

Figure 2. Extended characterisation of Knowledge Assets. 

 



 

Figure 3. Full state diagram for the KA characterisation transitions. 

 

 

Figure 4. Probabilities of re-characterisation generation. 

 



 

Figure 5. The IBLT process. 

 

 

Figure 6. Interaction with the simulation modules. 

 



 

Figure 7. Configuration panel and characterisation world. 

 

 

Figure 8. Simulation of evolution of knowledge assets and instances. 

 



 

Figure 9. Estimation vs. Prediction using the simulation model. 

 

 

Figure 10. Accuracy of the simulation model, by knowledge asset. 

 

 

 


