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ABSTRACT 

This study reviews the relationship between the different types of oil extraction such as 

horizontal drilling or fracking, or directional drilling, which is a hybrid between vertical 

and horizontal, on the behavior of West Texas Intermediate crude oil prices. In doing so 

the study adds a new dimension to the literature on the relationship between oil price and 

extraction techniques. The analysis is based on statistical properties using the VAR model 

of Fractional Cointegration, reflecting evidence of cointegration between the series, and 

indicating a long-term equilibrium relationship. In addition, we apply the wavelet 

transform to analyze the structural changes in the price of West Texas Intermediate 

brought about by changes in drilling technology. Our results show that all three forms of 

extraction and West Texas Intermediate prices reach high levels of correlation, 

particularly around 2014. We conclude that a decrease in production based on any form 

of crude oil extraction leads to an increase in the price of crude oil. 
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1. Introduction 

In the United States the largest source of energy is crude oil. According to the 

International Energy Agency (IEA, 2019), crude oil consumption in the United States 

averages 20.54 million barrels per day (mbpd), including 1.1 mbpd which corresponds to 

biofuels. In global terms, global oil consumption stands at 98.8 million barrels per day 

(mbpd), making this natural resource a key asset for many economies. 

However, the transformation that the energy sector is undergoing (the Paris 

Agreement, lithium battery energy storage, hybrid and electric mobility, etc.) motivated 

by global warming, climate change and concerns about the sustainability of our 

environment have diminished the role of oil as the predominant energy resource in recent 

years. This has raised concern among oil extraction companies over the optimization of 

their resources and led them to analyze more carefully their extraction efficiency and how 

this can affect their competitive position in the global energy resources market (see, e.g., 

Heijnen et al., 2015). 

Even though we are dealing with a natural resource, which has been used since 

ancient times, it was not until the middle of the 19th century that the first commercially 

viable oil extraction well was developed (Owen, 1975). The progressive growth of the 

automobile industry and the successful application of this mineral to internal combustion 

engines, caused the demand for crude oil to rocket throughout the 20th century. If prior 

to the First World War (1914) there were approximately one million vehicles that used 

gasoline, by 1964 that figure had exceeded 170 million globally. Consequently, from 

1957 to 1966 the same amount of oil was used as in the previous 100 years. Furthermore, 

the numerous geopolitical conflicts associated with the extraction of this highly-

demanded resource, together with the enormous dependence of many non-producing 
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countries, has led to the search, since the beginning of the century, for new more efficient 

extraction methods that enable access to larger reserves (Stevens, 2013). 

 

Extraction technologies 

Drilling of wells is required for the extraction of hydrocarbons. The first drilling was 

carried out in 1895 using the percussion drilling technique (Gatlin 1960). Drilling can be 

classified according to the method of rock breaking used, percussion drilling or rotary 

drilling, the latter being the more widely used (Lyons, Plisga and Lorenz, 2016). Drilling 

must also consider the characteristics of the well trajectory, hence important drilling 

methods such as vertical drilling, horizontal drilling and directional drilling have been 

developed. 

 

1. Vertical drilling 

Vertical drilling has traditionally been used for the search and production of oil in 

deposits. However, this extraction method is limited by the existence of rocks with low 

permeability and porosity. For the exploitation of ultra-deep oil resources, vertical drilling 

is necessary and is associated with reducing accidents at the bottom of the wells (Ma and 

Zhao, 2016). Vertical wells are those in which a target directly below the drill location 

on the surface is aimed for (Gatlin, 1960). The first vertical wells were drilled to a depth 

of 65 feet using the percussion drilling technique in 1895. 

 

2. Horizontal drilling 

Horizontal extraction began during the last century and is fundamentally based on vertical 

exploration up to a certain point at which the drilling bit is changed to a horizontal 

position. Subsequently, hydraulic fracturing then manages to extend the length of the well 
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and access reserves that could not previously be reached using only a vertical extraction 

method. The technique used to drill a well from the surface to a certain subsurface 

location just above the oil or gas well is called horizontal drilling. The entry point is the 

one where the reservoir intersects after moving the well from the vertical plane around a 

curvature and a horizontal slope is generated. Ishak et al. (1995) described how this 

process is carried out until reaching the desired location in the well. 

 

3. Directional drilling 

Directional extraction is a mixture of the two previous models. This technique is used to 

increase extraction capacity and to avoid obstacles that impede access to the reserves or 

to avoid damaging sensitive environmental areas (Ma and Zhao, 2016). Traditionally, the 

most widely used method to obtain oil in the U.S. has been vertical extraction. However, 

as we can see in Figure 1, this technology has diminished in use due to the introduction 

and promotion of other methods such as fracking (horizontal extraction). Nowadays, oil 

wells drilled horizontally in tight oil formations account for an increasing share of the 

crude production in the United States. Horizontal wells accounted for 15% of U.S. crude 

oil production in 2004, increasing to 96% in 2018. Horizontal drilling, parallel to 

geological layers in narrow formations, allows producers to access more rock that 

contains oil and natural gas than vertical drilling: this is what is commonly known as 

hydraulic fracturing (IEA, 2020). 

All the extraction methods referred to are enormously capital resource intensive, 

which implies risk and leads to concern about how these costs may affect production and 

prices in the market (Apergis et al., 2016). However, there are cost differences in 

extraction depending on the technology used. Bear in mind that drilling and completing 

a well can cost between $100-$150 per foot at the deepest sections and then around $450-
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$625 per lateral foot (IEA, 2020). For all these reasons, companies dedicated to the 

extraction of crude pre-oil have been re-evaluating their extraction strategies in terms of 

the technologies used, since these can be a determining factor when positioning 

themselves in an increasingly competitive energy market. 

 

Figure 1: U.S. tight oil and shale gas production and well counts 

 

 

Source: U.S. Energy Information Administration, 2020.  

Note: “The classification of vertical wells includes those wells that are created by directional and unknown 

drilling. The volumes of natural days include the values extracted from shale gas, and the liquid production 

of the formations of this gas are included in the volumes of tight oil.” 

 

 

Crude oil price analysis 

To understand the behavior of each of the forms of crude oil extraction in the United 

States and how these affect the price of crude oil, we analyze the statistical properties of 

drilling rig counts in the U.S. according to their extraction technology and the West Texas 

Intermediate (WTI) U.S. oil price. With this objective, persistence is analyzed using 

fractional integration techniques such as those used by Monge et al. (2017 a,b) and Monge 

and Gil-Alana, (2020). Following the investigation of Johansen and Nielsen (2010, 2012) 

based on the Fractional Cointegration VAR (FCVAR) approach, the study of the long-
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term relationships of these variables is carried out. Finally, a wavelet analysis is carried 

out (Aguiar-Conraria and Soares, 2014) with the aim of examining whether possible 

changes in technology carried out in the excavations can lead to structural changes in the 

price of WTI. 

To the best of our knowledge, there are no previous research papers that have 

studied oil production series in the United States according to the method of obtaining oil 

through a fractional integration and cointegration analysis and that have also included a 

study on what implications prices have on the West Texas Intermediate (WTI) market 

using Wavelet transforms. Kaufman et al. (1994) studied the possibility of applying 

policies that would increase the exploration and development of the oil industry by 

estimating a model that would allow the completion of wells in the United States; in their 

analysis they include the consequences of price expectations from the data obtained from 

the wells.  Krane and Agerton (2015) state that, in general, the supply of crude oil tends 

to be more elastic in the face of price changes in wells of these characteristics. Baffes et 

al. (2015) also state that the changes in supply in recent years have been mainly due to 

the increase in production in the United States due to the development of new extraction 

techniques. Accordingly, Arezki and Blanchard (2015) affirm that only between 20% and 

30% of supply is determined by factors associated with demand. Along the same lines, 

Hamilton (2014) explains that only 2/5 of the falls in the price of crude oil observed in 

2014 are explained by the fall in demand. Baumeister and Kilian (2016) showed evidence 

that, in addition to the deceleration in the demand for crude oil, there are other shocks to 

world oil production and oil price expectations. All this evidence suggests that there are 

factors other than demand that determine the price, and these could be, among others, the 

type of extraction used. 
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Das et al. (2018) use the West Texas Intermediate (WTI) index for their review of 

the relationship between U.S. economic growth and crude oil prices considering the 

Industrial Production Index and WTI spot prices, adding a new dimension to the 

relationship between oil prices and economic growth. 

In an interesting study carried out by Apergis et al. (2021), the asymmetries 

between the different drilling techniques are examined depending on their trajectory, the 

price of oil and its production in the U.S.. The research shows the independence of oil 

prices with respect to the extraction technique, revealing however a short-term 

asymmetry with respect to oil prices and production. Focusing more on the subject matter 

of our analysis, there are numerous studies which focus on the analysis of factors that 

affect the behavior of energy and oil prices in various countries, and, in particular in the 

United States. Kyrtsou et al. (2009) carried out different univariate tests for non-linearity 

and chaotic structure using energy sector price data to determine if the shocks produced 

by internal and external factors affect the prices of energy resources. On the other hand, 

Monge and Gil-Alana (2015) used gradual integration and cointegration techniques to 

conduct an analysis of how the price of crude oil in the United States affects mergers and 

acquisitions (M&A). Their results show that, between two and three months after an 

increase in the price of oil there is a significant increase in the number of mergers and 

acquisitions. In order to analyze the regionalization of the world crude oil market, the 

authors used high-frequency data to find co-movements among crude oil prices.  

Hailemariam et al. (2019) studied the existence of a relationship between the 

economic policies applied in the G7 countries and their relationship with oil prices, 

completing the existing literature with Kang and Ratti (2013), Degiannakis et al. (2018) 

and Antonakakis et al. (2014), among others. The results showed that the years in which 
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increases in crude oil prices were carried out were the consequence of a global increase 

in demand, since an estimated function of the negative oil price coefficient was obtained. 

Although Ivanovski and Hailemariam (2021) studied the theoretical ambiguity in 

the relationship between oil prices and stock returns, there is an extensive literature that 

denies the relationship (see, for example, Basher et al., 2012). However, some authors 

provide evidence of the existence of a relationship between the variables (see Narayan 

and Narayan, 2010). Thus, Monge et al. (2017b) applied wavelet tools to study shale oil 

production and the behavior of WTI prices. Apergis et al. (2016) analyzed how oil and 

natural gas prices may be affected by changes in the number of rigs and their 

refurbishments.  Smith and Lee (2017) developed a model that allowed them to state that 

the volume of crude oil reserves is inelastic with respect to the price of oil. More 

specifically, they stated that the vast majority of extraction wells have fairly low 

productivity and represent a relatively small percentage of total reserves, which is why a 

drop in prices that leads to the elimination of some of these production points has no 

particular impact on the remaining volume of reserves.  Ewin and Malik (2017) showed 

the effect of the news, both positive and negative, on the volatility of oil prices through 

the implementation of an asymmetric GARCH model.  Monge et al. (2020) analyzed the 

(spatial) divergence of crude oil production in the United States, focusing especially on 

crude oil production between PADD 2 and PADD 3 zones, which are those in which a 

distribution bottleneck occurs, which directly affects the price of crude oil. West Texas 

Intermediate (WTI). 

The rest of the paper is organized as follows: the data used for the research are 

described in Section 2 in addition to the methodology that has been used to carry out the 

study. The results are discussed in Section 3. Finally, the conclusions are found in Section 

4. 



9 

 

 

2. Data and Methodology 

2a. Dataset 

The data used to carry out this study have been obtained from Baker Hughes1 and refer 

to the total count of drilling rigs in the U.S. as well as vertical, horizontal and directional 

drilling rig counts. In addition, we have also used the West Texas Intermediate (WTI) 

crude oil price index obtained from the U.S. Energy Information Administration2.  The 

data used in this research paper has a weekly frequency and the analyzed period is from 

February 4, 2011 to October 16, 2020. 

 

Figure 2: Weekly data for vertical, directional, horizontal and total drilling rig 

counts 

 

 

The data used are presented in Figure 2, displaying the time series plots of weekly 

data for vertical, directional, horizontal and total drilling rig counts. We observe in the 

figure that while vertical and directional extraction first decreases and then remains stable 

 
1 http://rigcount.bakerhughes.com 
2 https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=W 
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during the period of analysis, horizontal extraction represents the most productive 

technology in the United States. 

 

2b. Unit Roots 

To carry out the objectives set forth in this research work, the ADF tests are used 

following the line in Fuller (1976) and Dickey and Fuller (1979), to verify the 

characteristics of the time series used and to confirm if they are stationary or not. Other 

methods are also conducted such as those proposed in Phillips (1987) and Phillips and 

Perron (PP, 1988), Kwiatkowski et al. (KPSS, 1992), Elliot et al. al (ERS, 1996) and Ng 

and Perron (NP, 2001)). The results were very similar in all cases. 

 

2c. ARFIMA (p, d, q) model 

To study the statistical properties of time series, we follow a mathematical notation where 

a time series 𝑥𝑡,   𝑡 = 1, 2, … follows an integrated of order 𝑑 process (and denoted as 

𝑥𝑡 ≈ 𝐼(𝑑)) if: 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡 ,        𝑡 = 1, 2, …,                                  (1) 

where any real value is represented by 𝑑, lag-operator (𝐿𝑥𝑡 = 𝑥𝑡−1) is represented by 𝐿 

and 𝐼(0) covariance stationary process is represented by 𝑢𝑡 which means that the spectral 

density function is positive and finite at the zero frequency, displaying potentially a type 

of time dependence in a weak form. So, if 𝑢𝑡 is ARMA (p, q), xt is then said to be 

ARFIMA (p, d, q). 

The result of the parameter d allows us to conclude that if d < 0, xt is anti-

persistent, and this occurs when the series changes sign more frequently than occurs in a 

random process and when it has zero spectral density at the origin. (see Dittmann and 

Granger, 2002);  
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xt is short memory or I(0) when 𝑑 = 0 in (1) because 𝑥𝑡 = 𝑢𝑡. 

xt is long memory when d > 0 and we find a high degree of association in observations 

far distant in time. Related to this last assumption we say that the process is still 

covariance stationary if 𝑑 < 0.5. When d has a value less than 1, it displays reversion to 

the mean and it implies that if there is a shock, its effect will be transitory; on the contrary, 

when d ≥ 1, the effect of the shock will be permanent. 

Geweke and Porter-Hudak (1983), Phillips (1999, 2007), Sowell (1992) and 

others carried out various techniques for calculating the degree of long memory and 

fractional integration. To represent the results, Sowell’s (1992) likelihood technique has 

been used, while in order to choose the most appropriate ARFIMA model for the analysis, 

the Akaike information criterion (AIC, Akaike, 1973) and the Bayesian Information 

Criterion (BIC; Akaike, 1979) have been employed. 

 

2d. Fractional Cointegrated Vector AutoRegressive Model  

The Fractional Cointegrated Vectorial AutoRegressive (FCVAR) method was studied by 

Johansen (2008) and later expanded by Johansen and Nielsen (2010, 2012), this being the 

natural evolution of the model described earlier by Johansen (1996) of the Cointegrated 

Vector AutoRegressive (CVAR). This method has the ability to admit integrated time 

series of order d that cointegrate with order d - b, with b > 0. It is necessary to present the 

non-fractional CVAR model before carrying out the FCVAR. 

Let 𝑌𝑡, 𝑡 = 1, … , 𝑇 be a p-dimensional I(1) time series. The CVAR model is:  

Δ𝑌𝑡 = 𝛼𝛽′𝑌𝑡−1 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑌𝑡−𝑖 + 𝜀𝑡 = 𝛼𝛽′𝐿𝑌𝑡 + ∑ Γ𝑖

𝑘
𝑖=1 Δ𝐿𝑖𝑌𝑡 + 𝜀𝑡. (2) 

To derive the FCVAR model, we need ∆𝑏 and 𝐿𝑏 = 1 − ∆𝑏 which are the fractional 

counterparts to replace the difference and lag operator Δ and 𝐿 in (2). We then obtain: 

∆𝑏𝑌𝑡 =  𝛼𝛽′𝐿𝑏𝑌𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡,   (3) 
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which is applied to 𝑌𝑡 = ∆𝑑−𝑏𝑋𝑡 such that 

    ∆𝑑𝑋𝑡 =  𝛼𝛽′𝐿𝑏∆𝑑−𝑏𝑋𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑏𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡,   (4) 

where 𝜀𝑡 is a term with mean zero and variance-covariance matrix Ω that is p-dimensional 

independent and identically distributed. As in the CVAR model, the parameters can be 

interpreted as follows. 𝛼 and 𝛽 are 𝑝 × 𝑟 matrices, where 0 ≤ 𝑟 ≤ 𝑝. The relationship in 

the long-run equilibria in terms of cointegration in the system is due to the matrix 𝛽. The 

short-run behavior of the variables depends on the parameter Γ𝑖. Finally, the deviations 

from the equilibria and their speed in the adjustment depends on the parameter 𝛼. 

 

2e. Wavelet Analysis  

Time series are an aggregation of components operating on different frequencies. Thus, 

the most outstanding information is hidden in the frequency content of the signal. Wavelet 

coherence and wavelet phase difference have been used to further this research in the 

time-frequency domain. This study allows us to analyze the interaction of the time series 

in the time domain and to reveal structural changes without the need for it to comply with 

the stationarity characteristic. 3 

 Based on the analysis carried out by Kyrtsou et al. (2009) on the energy markets 

and nonlinear dependencies, several authors have used nonlinear methods to analyze the 

impact of oil shocks using wavelet analysis. Other authors such as Aguiar-Conraria and 

Soares (2014) and Crowley and Mayes (2009) have used wavelets to test and to study 

business cycle synchronization. To identify hidden patterns and/or information, we use 

the wavelet coherency plot that measures the correlation between the time series in the 

time-frequency domain. To get this result, we calculate the 𝑊𝑇𝑥(𝑎, 𝜏) which is the 

 
3 Continuous Wavelet Transform (CWT) has been applied in several finance and economics research papers 

such as Vacha and Barunik (2012), Aguiar-Conraria and Soares (2011, 2014), Dewandaru et al. (2016), 

Tiwari et al. (2016), Jammazi et al. (2017), among others. 
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wavelet transform of a time series 𝑥(𝑡), projecting the mother wavelet ψ to map the 

original time series onto a function of 𝜏 and 𝑎:  

 𝑊𝑇𝑥(𝑎, 𝜏) = ∫ 𝑥(𝑡)
1

√𝑎
𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

+∞

−∞
,  (5) 

To measure the synchronism between the time series, the Morlet wavelet is chosen as the 

mother wavelet, as this is a complex sinusoidal wave within a Gaussian envelope. 

(Aguiar-Conraria and Soares, 2014). 

 Taking into account the results that we get using Wavelet Transform, Wavelet 

coherence helps us understand how one time series interacts with respect to the other. We 

can define this term as: 

𝑊𝐶𝑂𝑥𝑦 =
𝑆𝑂(𝑊𝑇𝑥(𝑎,𝜏)𝑊𝑇𝑦(𝑎,𝜏)∗)

√𝑆𝑂(|𝑊𝑇𝑥(𝑎,𝜏)|2)𝑆𝑂(|𝑊𝑇𝑦(𝑎,𝜏)|
2

)

 ,   (6) 

The SO parameter represents the smoothing operator in time, being relevant since if it 

were dispensed with, the wavelet coherence for all scales and times would be one 

(Aguiar-Conraria et al., 2008). The codes developed with Matlab for the CWT solution 

can be found on the Aguiar-Conraria website4. 

 

3. Empirical Results 

3a. Unit roots 

Three standard unit root tests have been calculated to examine the statistical properties of 

the total, horizontal, vertical and directional drilling rig counts. We select the ADF 

(Augmented Dickey-Fuller, 1979) test, the PP (Phillips Perron, 1988) test and the KPSS 

(Kwiatkowski-Phillips-Schmidt-Shin, 1992). Table 1 displays the results, which suggest 

that the five selected time series are non-stationary I(1). 

 

 
4 https://sites.google.com/site/aguiarconraria/joanasoares-wavelets 
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Table 1: Unit roots tests. 

 ADF PP KPSS 

 (i) (ii) (iii) (ii) (iii) (ii) (iii) 

Total -1.5658 0.0166 -1.3991 0.0938 -1.2827 5.255 0.6531 

Directional -1.7676 -0.6955 -1.7014 -0.7515 -1.7348 6.182 0.7338 

Horizontal -1.1129 -0.0576 -1.2067 0.117 -1.0859 3.2651 0.4419 

Vertical -2.7296 -0.8456 -0.5569 -0.9263 -0.7225 6.5833 1.3532 

WTI -1.0123 -1.4415 -2.5739 -1.3973 -2.3808 4.6837 0.6433 

(i) Refers to the model with no deterministic components; (ii) with an intercept, and (iii) with a linear time 

trend. We reflect t-statistic with a test critical value at 5%. 

 

 

 

3b. Fractional Integration 

The use of fractional methods and ARFIMA (p,d,q) models is chosen given the low power 

of unit root tests5 in long memory contexts. For the selection of the most appropriate AR 

and MA orders in the models, the Akaike information criterion (AIC; Akaike, 1973) and 

the Bayesian information criterion (BIC; Akaike, 1979) are applied6. 

The AR and MA terms and the fractional parameter d resulting from the use of 

Sowell's (1992) maximum likelihood estimator of various ARFIMA specifications (p,d,q) 

for all combinations of p, q ≤ 2 are shown in Table 2. 

 

Table 2. Results of long memory tests 

Data 

analyzed 
Model Selected d Std. Error Interval I(d) 

Total 
ARFIMA (0, d, 0) 1.4399263 0.0293275 [1.39, 1.49] I(d >1) 

 
5 See Diebold and Rudebusch (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996). 
6 A note of caution should be adopted here since the AIC and BIC may not necessarily be the best criteria 

for applications involving fractional models (Hosking, 1981). 
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Directional ARFIMA (2, d, 2) 1.0456892 0.0370000 [0.98, 1.10] I(1) 

Horizontal ARFIMA (1, d, 1) 1.4856419 0.0189182 [1.45, 1.51] I(d >1) 

Vertical ARFIMA (2, d, 2) 1.222881 0.100698 [1.06, 1.39] I(d > 1) 

WTI crude 

oil price 

ARFIMA (2, d, 2) 1.0537872 0.1766352 [0.76, 1.34] I(1) 

  

 

   Table 2 reflects that in all cases the estimates of d are equal to or greater than 1. In the 

prices of directional oil and WTI, the hypothesis I(1) cannot be rejected, while for the 

remaining three series it can be rejected in favor of a greater order of integration. This 

seems to indicate that the shocks will be permanent as there is no evidence of reversion 

to the mean in any of the individual cases, causing a change in trend. Therefore, it can be 

concluded that extraordinary measures will be required to reestablish trends in the event 

of shocks. 

 

3c. Fractional Cointegration VAR model 

Table 3 shows the results obtained after analyzing the persistence of the long-term co-

movements of the series from the FCVAR model. 

 

Table 3: Results of the FCVAR model (𝒅 ≠ 𝒃) 

 d b 

Panel I: without crude oil prices 

𝑑 = 1.019 

(0.085) 

𝑏 = 0.669 

(0.100) 
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Panel II: with crude oil prices 

𝑑 = 0.729 

(0.163) 

𝑏 = 0.729 

(0.104) 

 

 

From Panel I in Table 3 where the WTI crude oil price is not included in the 

analysis, an order of integration of around 0.35 is obtained since for the individual time 

series it is 1.02 and the reduction in the degree of integration in the regression is 0.67. 

With these results we may conclude that it is a time series with long-term equilibrium 

that follows a long memory process, so that a time forecast is obtained over long horizons 

(Baillie and Bollerslev, 1994). It is a long duration shock with a stationary process in the 

correction of the error according to the value obtained (𝑑 − 𝑏 = 0.35). 

In Panel II, where the WTI crude oil price is included in the analysis, we observe 

that the order of integration of the time series is (𝑑 − 𝑏) = 0, because the order of 

integration of the individual series is about 0.729 and the reduction term is of precisely 

the same magnitude. This result implies I(0) cointegration errors. Thus, we cannot reject 

the hypothesis where the shock duration is short-lived due to the error correction term 

showing short-run stationary behavior. 

From an economic viewpoint, we can conclude that a shock to any type of oil 

production will have a lasting effect in the long run. However, when we introduce price 

into the analysis, we observe that it cannot be concluded that the behavior will be the 

same as oil production, since the results indicate that the shock will be of shorter duration. 

 

3d. Wavelet Analysis 
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We use a multivariate wavelet analysis based on the time-frequency domain to estimate 

how the different ways of extracting oil affect the behavior of oil prices. Also, the possible 

presence of structural changes can be detected for the whole sample. 

 

Figure 3. Wavelet Coherency, Phase-differences and Wavelet gain between different 

ways of extracting oil and WTI crude oil prices 
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Figure 3 tells us when and at which frequencies the interrelations between the time 

series occur and when they are the strongest. Thus, in section (a) of Figure 3 we obtain 

the wavelet coherency, identifying the main regions with statistically significant 

coherency. Also, with this term we consider the importance and the strength of the 

interrelations between the analyzed time series. These regions are located at cycles 

corresponding to 24 and 128 weeks (low frequencies), starting at 2014 in all the series. 

Once we have identified the regions, we look at the results obtained in sections 

(b) and (c) of the figure, the partial phase difference and the partial wavelet gain, 

respectively. These two results allow us to determine the impact and importance of the 

shock of one variable in relation to the other. On the results previously obtained at the 

5% significance level, the phase difference is between −𝜋/2 and −𝜋. This means that the 

different ways of extracting oil and the prices of WTI crude oil, at the frequencies studied, 

give rise to an antiphase relationship where oil extraction is related to the prices of WTI 

crude oil. Economically, this means that a decrease in the production of any form of crude 

oil extraction implies an increase in the WTI price. The module of the regression 

coefficient in the different forms of extraction, corresponding to the partial profit, is 0.065 

on the WTI prices at each moment. 

 

4. Conclusion and policy implications 

The average consumption of barrels of crude oil in the United States exceeds 20 million 

a day (mbpd). However, the increase in awareness regarding climate change has brought 

about a notable expansion in the use of clean energies in recent years, reducing the market 

share of the more polluting traditional energy sources, such as oil. As a result, the level 

of competitiveness in the energy market has grown in recent years, causing the oil 

industry to seek new ways of expanding its operations, in particular, the use of horizontal 
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drilling techniques capable of reaching much more extensive reserves. In the United 

States, the number of extraction wells using this technology increased from 15% in 2004 

to 96% in 2018, indicating a shift in production technology that has fostered the 

introduction of sweeping changes in the industry. The objective of our study is twofold. 

First, we examine the statistical properties of the horizontal, vertical and directional 

drilling rig counts by measuring the degree of persistence with fractional integration 

techniques, also using the FCVAR model to study their long-term relationships. Second, 

and through continuous wavelet transformation techniques, we aim to analyze whether 

this transition from vertical to horizontal extraction techniques has had repercussions on 

the behavior of the West Texas Intermediate (WTI) index for the price of crude oil in the 

United States. 

To carry out this research, some unit root methods (ADF, Dickey and Fuller; PP, 

Phillips and Perron, 1988, and KPSS, Kwiatkowski et al., 1992) are first performed. From 

the results obtained, it can be concluded that these are non-stationary I(1) series. 

Fractional integration is also used in this study, obtaining that the five time series 

examined (counts of total, directional, horizontal and vertical drilling platforms and WTI 

crude oil prices) display orders of integration equal to or above 1, implying a lack of mean 

reversion in the series, and thus with shocks having permanent effects. 

The long-term correlation between the variables in the multivariate case is 

confirmed by the FCVAR model. For the individual series, the order of integration is 1.02 

and the reduction in the degree of integration is close to 0.67. Therefore, we obtain 0.35 

for the degree of integration corresponding to the cointegration vector, which indicates a 

certain forecasting power in long horizons and implies that the shock could be of long 

duration following a stationary process with the error correction term. The order of the 

individual time series is close to 0.729 for WTI prices, with 0.729 being exactly the same 
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for the reduction in the degree of integration in the cointegration regression, indicating 

I(0) cointegration errors. Therefore, it is not possible to reject the hypothesis in which the 

error correction term behaves stationary in the short term, and it is a shock of short 

duration. 

Finally, we apply Continuous Wavelet Transform (CWT) to analyze the structural 

changes caused by changes in drilling technology on the price of the West Texas 

Intermediate (WTI). Our results show that the three different ways of extracting oil and 

WTI crude oil prices reach high levels of correlation, the most important one starting 

around 2014. We conclude that a decrease in the production of any form of crude oil 

extraction implies an increase in the price of WTI crude oil.  

This research can be very useful for all those institutions and companies that are 

affected by the changes that occur in the oil market, achieving a better understanding of 

the behavior of the WTI price related to the effects of production. From a methodological 

viewpoint, the paper can also be extended in various directions. First, the presence of 

structural breaks can be examined by using standard methods such as Perron and 

Vogelsang (1992), Perron (1997) and Bai and Perron (2003) or using the fractional 

approach developed in Gil-Alana (2008), Ohanissian et al. (2008), Aue and Horvath 

(2013) and others. Moreover, noting that fractional integration is very much related to the 

presence of non-linearities, this is another avenue for future work, using, for example, the 

approach developed in Cuestas and Gil-Alana (2016) that allows for Chebyshev’s 

polynomials in time in the context of I(d) models. All these lines of research will be 

pursued in future papers. 
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