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Measuring Control to Dynamically
Induce Flow in Tetris
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Abstract—Dynamic Difficulty Adjustment (DDA) is a set of
techniques that aim to automatically adapt the difficulty of
a video game based on the player’s performance. This paper
presents a methodology for DDA using ideas from the theory of
flow and case-based reasoning (CBR). In essence we are looking
to generate game sessions with a similar difficulty evolution to
previous game sessions that have produced flow in players with
a similar skill level. We propose a CBR approach to dynamically
assess the player’s skill level and adapt the difficulty of the game
based on the relative complexity of the last game states.

We develop a DDA system for Tetris using this methodology
and show, in a experiment with 40 participants, that the DDA
version has a measurable impact on the perceived flow using
validated questionnaires.

Index Terms—Dynamic Difficulty Adjustment, Flow, Artificial
Intelligence, Video Games.

I. INTRODUCTION

THE video game industry has grown rapidly in recent
years. In 2020, this industry generated revenues above

$170 billion and it is expected to continue growing in the
following years. This growth has motivated investors to finance
with additional resources the development of new titles, and
game studios to look for new ways to overcome the inherent
difficulties involved in creating and maintaining good quality
video games. The production of an average AAA video game
takes between 1-3 years not just because the time required
to create all the assets and game mechanics but because all
these ideas must be tested continually to validate that they
really work and the game is entertaining. This way, game
designers play a fundamental role in the production of video
games. They are usually in charge of defining the game levels,
the puzzles, the controls, the game mechanics, the character
dialogues, ... and especially the difficulty levels of the game
that usually involve defining different sets of behaviors for
the AI characters that will be used according to the player’s
skill level [1]. In other words, the “intelligence” seen in most
video games today is the result of trying to anticipate different
player behaviors and then, during the production stage, to
implement a standard set of actions to respond appropriately
in each expected scenario. Most of the content in video
games today is predefined, created during the development
process, with the hope that it will be adequate for most of
the players, challenging but not too difficult, but that is not
always achieved. In fact, player’s feedback is an essential tool
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for designers to distinguish between extremely difficult tasks
and a great challenge [2].

An “intelligent” video game should be able to decide what
to do in scenarios that the designers could not anticipate and
provide an appropriate response [3]. In particular, the classical
predefined difficulty levels present in most video games are not
optimal for all players, and the difficulty of the game may not
evolve at the same rate as the player’s skills, making the game
too easy or too difficult. In this sense, difficulty should not be
understood as a static property, but a subjective factor derived
from the interaction between the player and the proposed
challenge [4]. Dynamic Difficulty Adjustment (DDA) is a set
of techniques that aim to automatically adapt the difficulty
of the game based on the player’s performance [5]. That
is, the player-game interactions are continuously evaluated to
change the difficulty of the game according to the player’s
current needs with the goal of keeping the player engaged.
A notable advantage of using DDA is the reduction in video
game production costs, because if the game can adapt itself,
then designers and developers require less effort trying to
anticipate all possible situations [6]. For this reason, DDA has
captured the attention of leading companies in the video game
industry. Lopes and Bidarra [7] surveyed the state of art of
adaptivity in games and simulations, from both academia and
industry, and concluded that adaptivity is establishing itself
as a rapidly maturing field and that current advances show
good results in adapting towards an optimal challenge level
and emotional states such as fun, frustration, predictability,
anxiety or boredom.

Flow is a mental state in which a person performing some
activity is fully immersed in a feeling of focus, full involve-
ment, and enjoyment, usually resulting in a transformation in
the sense of time. The connection between flow and immersion
in video games is quite direct since the ability to transport its
players to their personal flow zones has been identified as a
requirement for a well-designed game [8].

This paper presents a novel methodology for DDA using
ideas from the theory of flow [9] and case-based reasoning
(CBR) [10]. A key advantage of using flow theory is that,
since it is a very popular theory in Psychology research, there
are different instruments to measure it, both on the basis
of physiological measurements and posteriori questionnaires.
Those instruments can be used to identify previous games
that have produced flow in players. Our methodology aims to
generate flow by altering the difficulty of the game so that its
evolution is similar to previous games that have produced flow
in players with a similar skill level. We use a CBR approach
to dynamically assess the player’s skill level and adapt the
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difficulty of the game using a measure of control based on the
relative complexity of the current game and a set of previous
similar labeled games. We have implemented a DDA system
for Tetris and show, using validated flow questionnaires, that
has a measurable impact on the players.

The rest of the paper runs as follows. In next section we
briefly introduce the theory of flow and presents its relation
to DDA in games. Then, in Section III, we present the
case-based DDA methodology exemplified with Tetris. Next,
we describe an experiment that shows that our approach
effectively improves the sense of flow in players in Section
IV. The paper concludes with some conclusions and future
lines of research.

II. RELATED WORK

A. The flow theory

Czikszentmihalyi [9] defines flow as the optimal experience
when nothing else matters. Entering flow depends on creating
the perfect balance between the perceived challenges of the
task at hand and one’s perceived abilities. Nakamura et al. [11]
say that it is the subjective challenges and subjective skills,
not the objective ones, that influence the quality of a person’s
experience. In other words, the person must have confidence
in their capacity to complete the task successfully to enter
flow. Csikszentmihalyi establishes nine dimensions which to-
gether represent the optimal psychological state of flow [12]:
challenge-skill balance, merging action-awareness, clear goals,
unambiguous feedback, concentration on the task at hand,
sense of control, loss of self-consciousness, the transformation
of time and autotelic experience.

Nakamura et al. [11] state that attention plays an essential
role in achieving a lasting feeling of flow because a person’s
attention plays a part in the type of emotions that the task
can generate. A person experiences apathy or boredom when
the task at hand is simple, as their attention is away from the
task. On the contrary, a person feels anxiety when they have
their full attention on the task, but it is very complex. That
is, the challenge exceeds their capacities. In an ideal situation,
the player has full attention on the task, its difficulty level is
correct to the player’s capacities, and the player has a feeling
of control, then they can enter flow. As a person masters a
challenge, her skills increases and thus the challenge must
grow in difficulty along with the person to keep them in flow
or, otherwise, the task ceases to be enjoyable.

Figure 1 shows in more detail the eight emotions a person
may experience while performing a task. The state of flow
occurs when the task at hand is exciting and challenging but
achievable, between the emotions of control and arousal. These
feelings intensify when the challenges and skills required to
perform the task are beyond the player’s average levels.

Descriptions of the flow experience in general tasks are
identical to those experienced by players when immersed in
games, such as losing track of time [8]. Cruz et al. [13] review
previous attempts to adapt the flow theory in the context
of video games. They describe different mappings between
flow elements and game features in order to promote player-
centered game design, and foster flow in the player experience.

Fig. 1. Mental state in terms of challenge level and skill level, according to
Csikszentmihalyi’s flow model [11].

Of particular relevance in establishing the connection between
flow theory and game design is the GameFlow model [14].
GameFlow is a model of player enjoyment, comprised of a
set of criteria derived from games user experience literature
and structured into eight elements that can be mapped to
Csikszentmihalyi’s concept of flow.

B. Flow and DDA

Most attempts to connect the flow theory and DDA make
use of devices that monitor physiological variables (electroen-
cephalograms (EEG), heart rate or galvanic skin response
among others) to identify the player’s emotional state and
adjust the difficulty of the game accordingly. Chanel et al. [15]
describe an early attempt on identifying emotions when play-
ing Tetris at three different difficulty levels. Klasen et al. [16]
assess how the brain responds to the different dimensions
that contribute to the flow experience in a first-person shooter
game, showing that the balance between challenge and skill,
sense of control and concentration are most representative of
the flow experience. One of the first applications of emotion
detection to actually implement a DDA system is described
in [17] using players’ EEG signals during playing a rhythm
game. More elaborated versions, both for shooter games, are
described in [18] and [19] where the authors use different de-
vices to monitor physiological signals and adapt the difficulty
of the game to maintain the player’s level of excitement and
improve the gaming experience.

Although recent projects like BITalino have lowered the
entry barrier of bio-signal acquisition, the task of obtaining
bio-signals of good quality is time-consuming, and typically
tools for obtaining such measures are not comfortable for the
user, requiring electrodes attached to different parts of the
body. For that reason, it is not foreseeable that gamers will
become accustomed to using bio-signal acquisition hardware
on a regular basis in the near future. As an alternative to
physiological variables, numerous self-report questionnaires
can be found in the literature of Psychology that have been
validated as instruments for assessing flow [20]. In this work,
we propose the use of ex-post questionnaires instead of real-
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time difficulty adjustment through emotion detection using
physiological measures.

C. Other approaches to DDA

Most of the related work in DDA defines specific tech-
niques for adapting difficulty in different types of games. For
example, [21] tested five different algorithms for adjusting
difficulty in Tetris that, instead of adjusting game speed, adjust
difficulty by choosing blocks based on the current game state.
Adapting the AI of non-player characters (NPC) is the focus
of several contributions, such as [22] that propose an algorithm
for adjusting spawn rate and distance of the enemies, [23] in
MOBA games, or [24] and [21] in racing games. Sophisticated
techniques such as reinforcement learning and evolutionary
computation are typically applied in the generation of NPC
that can dynamically adapt to the player. One distinguishing
feature of the work presented in this paper is the focus on
”when to adapt” and not so much on ”how to adapt” the
difficulty.

In [25] the authors present an initial effort in developing a
universal mechanism for DDA, an online learning algorithm
that takes as input game-specific ways to modify difficulty and
the current player’s in-game history and produces as an output
an appropriate difficulty modification. Nevertheless, the paper
just covers the initial step of clustering into different types
and predicting the type from short traces of gameplay. Also
for player modeling, [26] presents a game-independent method
for predicting player performance. They proposed a data-
drive tensor factorization approach that can predict changes
in players’ skill mastery over time. Nevertheless, they only
cover the initial stage of player characterization. In general,
the difficulty adjustment phase is mostly game-specific and
may be more or less laborious depending on the game. In
this work, we decide when to adjust the difficulty based on
the player’s skill level and evolution of the complexity of the
current game compared to other previous good and bad games,
which also connects our work with previous work on player
modeling.

III. CASE-BASED DDA

In this section we introduce a general methodology that
serves as a guide for implementing DDA during the video
game development process and explain how we have imple-
mented its different phases in Tetris. Our goal is to facilitate
the creation of a system to improve the player’s experience by
balancing her real skills and the skills required to complete
the proposed challenges.

Our methodology consists of 2 phases (see Figure 2). The
first one, players’ pre-analysis, is an “offline” phase in which
we collect a set of games played by different players and then
we analyze those games to learn about how different players
interact with the game and which game variables are useful to
describe the player’s performance during the game. This is an
exploratory stage that will help us to create and annotate the
data used by the DDA system. The second phase is “online”
in the sense that it is performed during the game, and consists
of 2 main components, players’ categorization and difficulty

adjustment, that are executed one after the other continuously
during the game. The player categorization component will
predict the skill level of the current player during the game
comparing her performance with the performance of other
previous players. The difficulty adjustment component, in turn,
will decide if and how to adapt the difficulty of the game to
meet the current player’s skill level.

Note that these phases are very general and can be imple-
mented using different techniques. Moreover, the features used
in each game to model the player’s performance and to alter
the difficulty will be specific for each game. For this reason,
game designers play an important role in our methodology
and should be involved to identify the right game variables
to model the player’s performance and dynamically adapt the
difficulty of the game.

In the following sections we explain in detail how we have
implemented this methodology in Tetris. We use a case-based
reasoning approach (CBR) [10] in which cases represent the
evolution of previous games during short time windows, and
we focus on 2 flow dimensions that have been identified as
especially relevant to induce flow in video games: sense of
control and challenge-skill.

A. Players’ pre-analysis

The goal of this phase is to collect a set of game traces
and analyze them using different statistical and visualization
techniques to understand how different players interact with
the game, differentiate games that are more and less satisfac-
tory for the players, and identify the game variables that better
assess the performance of the player during the game.

1) Collect game dataset: The goal in this step is to col-
lect enough game traces and evaluations of those games to
represent the potential population of players. In asynchronous
setups where players participate at different times without the
supervision of some moderator, it is important to choose a
very quick way to evaluate players’ satisfaction after each
game because, while people were willing to play a few games
of Tetris, they were less willing to fill out a survey after
each game. Anything that takes more than a few seconds may
discourage the participants from playing another game. On the
other hand, synchronous setups are more expensive and usually
involve less participants, but the presence of a moderator
allows to use more sophisticated satisfaction surveys and
collect more data about each player and game.

We used an asynchronous setup and reached potential
participants sending emails to different mailing lists in our
university. The target participants were grad students in their
20-30s from different Faculties (sciences, engineering, litera-
ture, ...) and with different experience playing video games.
We asked them to assist us with a research study about video
games in which they only had to play Tetris and answer one
simple question. They were not incentivized to participate in
any other way. They played a special version of Tetris called
Tetris Analytics that looks like a normal Tetris game but stores
the game traces in files so that they can be reproduced and
analyzed later using different visualization tools and machine
learning algorithms. The participants could play as many
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Fig. 2. DDA methodology scheme. The goal of the offline phase is to collect, analyze and annotate a set of games that will be used in the second phase.
The online phase consists of 2 components that continuously analyze the player performance during the game and adapt the difficulty accordingly.

games as they wanted. The new pieces that appeared in the
game were randomly selected and there was only one standard
difficulty level. After each game, the system asked the players
to assess their experience evaluating the sentence It was a
good Tetris game with a 5-value Likert scale, where 1 means
strongly disagrees and 5 strongly agrees. We collected 156
game traces played by 51 different players. 9 games were
evaluated with a score of 1, 29 games with 2, 28 games with
3, 55 games with 4 and 35 games with a score of 5.

2) Establish player’s profiles: In several games, and in
Tetris in particular, there is a final score that measures the
performance of the player during the game. We can use this
variable to label player’s profile or skill level but only when
the game has ended. Also, it is not obvious what score ranges
correspond to each profile or how many profiles should be
differentiated. Fortunately, we can use the data collected in the
previous step to make reasonable choices. We used k-means
to cluster the final scores and the elbow method to select 3
clusters that represent different profiles that we identify with
beginners (0-2999 points, 72 games), average players (3000-
5999 points, 82 games) and experts (more than 6000 points,
2 games). Then, each game was annotated with a profile.

Note that we can create more or less profiles depending on
the desired granularity. We can use a number of profiles that
makes sense for the game designers or use some algorithmic
approach to select an optimal number of clusters.

3) Identify good and bad games: During the collection of
the game dataset, each game was evaluated with a satisfaction
score using a 5-value Likert scale. We consider that a game
was good if it was evaluated with a score of 4 or 5, and it was
a bad if it was evaluated with a score of 1 or 2. A score of
3 means that the player did not feel the game was especially
good or bad, so we do not consider them in this classification.
Additionally, bad games are divided into two subcategories,
too hard and too easy, depending on the final score of the
game with respect to the scores of the players within the same
profile. For example, if an average player evaluates a game
with a bad satisfaction score and the final game score is much
lower than the mean score of average players, we assume the
game was too difficult and that produced a negative effect
in the player’s experience. 90 games from the dataset were
annotated as good games, 19 as too hard and 4 as too easy. We
will use these 3 subsets of games later to adjust the difficulty
of the game so that it becomes similar to the good ones and
different to the bad ones.

4) Identify relevant game variables: The purpose of this
step is to select some variables that represent the player’s
performance during the game, and to identify the relevant
moments of the game in which we should measure them.
We will represent the evolution of these variables by means
of time series describing the evolution of the game. We will
then divide these time series into performance windows that
represent the evolution of the game over short periods of time.
This way, we will be able to adapt the difficulty in new games
comparing the last performance window of the current player
with the annotated performance windows in our dataset.

In Tetris we distinguish two types of decisions. When a
piece appears at the top of the board, the player must analyze
the current board and decide where she wants the piece to end
up. We call these decisions tactical decisions, since they lead to
states that the player wants to reach in the near future. Then, to
reach those states, the player must decide all the intermediate
actions (translations and rotations) needed to bring the current
piece from the top of the board to the desired final position.
In this paper we will focus on tactical decisions, since we
think they represent the most significant moments of the game,
and we will measure the evolution of the game only when
each piece settles in its final position. We leave for future
work to take into account also the intermediate moves that
lead to the final position, which undoubtedly contain relevant
information, but are also lower-level and noisier (e.g. nervous
players change the rotation of the piece back and forth several
times).

The selection of the variables that will be used to predict
the current player profile during the game is a trial-and-
error process that must be done with the help of the game
designers. Based on our knowledge of Tetris we have selected
the following variables to represent the evolution of the game:

• Piece number from the start of the game. As we only con-
sider tactical decisions and there is one tactical decision
per piece, it represents time.

• Score accumulated by the player once the current piece
is settled.

• Board height or the highest row occupied by a piece.
• Holes or empty cells that are completely covered by

another full cell.
Figure 3 shows how these game variables evolve in a game

of an average player. This player was able to settle 64 pieces
before the game finished and got a total score of 2480. The
yellow line describes the score evolution that grows slightly
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Fig. 3. Evolution of the game variables for a beginner player.

with each new piece and more abruptly when the player makes
a new line. The red line represents the board height and when
the game ends when it reaches 20. We can see that during the
first 30 pieces the player played in the lower half of the board,
but then the board height grew up because the pieces fell too
quickly for the player to set them compactly. Similarly, the
blue line represents the number of holes.

The evolution of each game variable can be represented as a
time series in which each value corresponds to the value of the
variable in consecutive instants of time. Since we are interested
in measuring the player performance in different moments of
the game, we divide the time series in performance windows
that represent the evolution of all the variables during a short
period of time. This way, each performance window is a matrix
of m × n where m is the number of variables and n is the
length of time window.

B. Player’s Categorization

We use a case-based reasoning (CBR) approach to decide
the skill profile of a new player during the game. The
description of each case contains a performance window of
length n = 10 (time series describing the evolution of the
game variables during 10 pieces), and the solution of the
case contains the profile of the player that played that game
(computed from its final score). When a player starts a new
game, we wait some time to construct her first performance
window and then we use it as a query to retrieve the k = 10
most similar cases in the case base. We predict the profile of
the current player by majority vote among the retrieved cases.
Next, we resume our approach, see [27] for a more detailed
description of this component.

When we retrieve the most similar cases to the current
performance window, we only consider cases collected at the
same time (piece number) in previous games because two very
similar boards in different moments of the game can have very
different implications regarding the player’s skill level. For
example, a game board with pieces only in the first rows and
a few holes is normal at the beginning of the game but only
expert players can have that same board configuration when
the game is well advanced and the pieces fall with great speed.

The similarity between a query and a case is calculated as a
linear combination of the similarities between their time series.

simc(c1, c2) = α1 simts(c1.score, c2.score) +

α2 simts(c1.holes, c2.holes) +

α3 simts(c1.height, c2.height)

where the weights α1, α2, α3 can be adjusted to give more or
less importance to each time series. The most important one in
Tetris to predict the player skill level is the game score (α1 =
0.70), followed by the number of holes (α2 = 0.25) and finally
the board height (α3 = 0.05). These optimal weights were
calculated using grid search with increments of 0.05 and 10-
fold cross validation to improve the accuracy of the classifier.

We compute the similarity between 2 time series using a
similarity based on the Euclidean distance [28]:

simts(r, s) = 1−

√√√√ n∑
i=1

(ri − si)2

where r and s are time series of size n.
Finally, inconsistent player behavior during the game can

produce frequent changes in the profile prediction, producing
continuous changes in the difficulty of the game. For example,
an expert player may be distracted at some point in the game
and appear to be a beginner, or a novice player may have
a good run for a while. Sudden changes in game difficulty
are often perceived as “something strange is going on” and
provoke a distrustful attitude in players. In addition, the profile
predictions of this module can fail (the predictions become
more accurate as the game progresses), so it is advisable to
use some inertia function that avoids transitioning between
extreme profiles. In our implementation, we use a inertia
function that only allows transitions between adjacent profiles.
That is, if a player was classified as a beginner in the previous
performance window, she can only be classified as a beginner
or intermediate in the current performance window, no matter
how well she places the last pieces.

C. Difficulty Adjustment

The purpose of this component is to decide when and how
to modify the difficulty of the game. We focus on 2 of the 9
dimensions that represent the optimal psychological state of
flow: challenge-skill balance and sense of control. This way,
the decision of whether to modify the difficulty of the game
and with what intensity to do so depends on the player’s profile
and whether she is in control within her profile.

1) Is the player in control?: The sense of control indicates
whether an individual feels capable of performing the task
because it is at an appropriate difficulty level and has been
identified as one of the most important components of the
flow experience [11]. If the task is too difficult, the subject
experiences anxiety, or if it is too easy, the subject experiences
boredom, so the feeling of control is somewhere between
those two extremes. To indirectly measure the control of the
player, we compute the complexity of the game state and then
compare it with the mean complexities of the good, too easy
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and too hard games in our collection of labelled games from
players within the same profile than the current player. For
the player to be in control, that is, performing a task with the
appropriate difficulty level, the complexity of the board during
the last performance window should be more similar to the
mean complexity of the good games than to the too easy or
too hard ones. As in the previous component, we only compare
the complexity of performance windows corresponding to the
same moment (number of piece) in different games.

We compute the game state complexity after each piece is
settled in it final location with the following formula:

C = a2 + σ(contour) + h

where a is the median height of the columns on the board
squared, σ(contour) is the standard deviation of the height of
the columns, and h is the number of holes between the pieces.
These variables represent challenges the player must overcome
as the speed of the falling piece increases: low board height,
homogeneous board contour and few holes between the pieces.
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Fig. 4. Mean game state complexity and its standard deviation for beginner
players as the game progresses.

Figure 4 shows the mean game state complexity and its
standard deviation for players with a beginner profile as the
game progresses. The red, green and blue lines represent the
mean complexity for the too hard, good and too easy games
respectively. As the game progresses, the complexities of the
games come apart and each one of them increases with a
different speed. This different trajectories also exists within
the average players but the lines are not so far apart.

Finally, to decide if the player is in control or not (a binary
variable), we compare the complexity of each game state in
the last performance window with the mean complexity of the
good, too easy and too hard games in the same instant. The
player will be in control when most of those complexities are
closer to the good games than to the too easy or too hard
games. If the player is not in control, the difficulty of the
game is not at the appropriate level for her current skill level.

2) Modify the difficulty in Tetris: The difficulty in Tetris
depends basically on two variables: the type of pieces deliv-
ered and the speed at which it falls. Using these two variables,

we can make the game more or less difficult and adapt it to
the skill level of the current player.

The next piece is probably the most important event in the
Tetris game. A good piece that fits the current configuration
of the board can potentially reduce the board height, while a
bad piece could greatly increment the complexity of the board.
We assess how good each piece is for the current board with a
heuristic function that evaluates each game board that can be
reached by placing that piece in each possible final location.
The heuristic value associated with each game board is the
board height plus the number of holes, so the smaller the value
the better the board. The heuristic value of each piece is the
best (lowest) value of the reachable boards (so we assume
the player will place it optimally). It is relevant to mention
that it might not be a good idea to always provide the best
or worst next piece, because some of them might be selected
too frequently and be perceived negatively by the players. It
is better to select one of the best or worst pieces randomly to
ensure enough variability.

The difficulty of the game can also be changed by altering
the speed at which the pieces fall. But we must do this
carefully, because the falling speed is supposed to always
increase in Tetris, and we don’t want players to detect that
we are changing the game. Also, if we reduce the drop speed
too much, the game might never end. Therefore, the correct
approach in this case is to slightly increase or decrease the drop
speed increment each time the player places another piece.

Although our methodology can be used to make the game
more or less difficult, in the experiment described next we have
focused solely on making the game easier and thereby helping
less experienced players. We think that beginner players have
more trouble enjoying the game and getting into flow, while
expert players already have the necessary skills to achieve
the proposed challenges and need little or no help to have
a satisfying experience. Therefore, we define two different
adaptation’s levels to produce a challenge-skill balance that
consider both the player profile and the feeling of control:

• Speed-piece adaptation This level modifies the falling
speed and the next piece. The next piece is selected
randomly among the best 3 candidates. The falling speed
rate increases by half of what it normally would. This
adaptation level is active when the player is a beginner
and is not in control.

• Piece-only adaptation This level modifies only the next
piece. This adaptation level is active when either the
player is a beginner and is in control, or when the player
is average and is not in control.

IV. EXPERIMENT

In the experiment we compare three different versions
of Tetris: normal, trivial and balanced (DDA). The normal
version corresponds to the original Tetris Analytics system in
which the next piece is chosen randomly, while the other two
versions are modifications of this same system. The normal
version is the original Tetris game without any modifications.
The trivial version always returns a good next piece so that the
player can easily make lines. The balanced version analyses
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the player’s performance and changes the difficulty level
accordingly as we have explained in the previous section. The
goal of this experiment is to measure the flow that players
experience during the games.

The experiment will test the following hypotheses:
• H1: We get more players to experience flow using DDA

(balanced version) than without it (normal version).
• H2: It is harder for beginners to experience flow com-

pared to intermediate or advanced level players (normal
version).

• H3: If we provide an easy Tetris version to players with
a low skill level, then they will experience flow (trivial
version).

• H4: If Tetris is too easy, then the players will not
experience flow (trivial version).

A. Experimental setup

The experiment was performed on site with the presence of
a moderator that provided the initial instructions and guided
the experiment. 40 volunteers participated in the experiment
(computer science students other than those who participated
in Section III-A1). They were asked to fill out a form with
basic demographic information (age, sex) and answer some
questions regarding their use of video games: Are you a
regular player? (yes/no), How many hours do you play per
week? (0-5, 5-10, 10-15, 15-20, +20), Do you know Tetris?
(yes/no), What skill level do you have in Tetris? (never played
before, beginner, intermediate, advanced).

Each participant began by playing Tetris for 40 seconds
to become familiar with the controls and to remember how
the game works. Next, each participant played 3 complete
games, filling out the SHORT Flow State Scale (S-FSS) [12]
questionnaire after each game. Finally, each participant chose
the game she liked the most (1, 2 or 3). The experiment was
designed to last approximately 30 minutes.

The participants did not know the purpose of the experiment
or whether the games corresponded to different versions of
Tetris. Participants were randomly divided in 3 groups so that
they played the different versions in different order:

• Group 1: trivial, balanced, normal.
• Group 2: normal, trivial, balanced.
• Group 3: balanced, normal, trivial.
The SHORT Flow State Scale (S-FSS) [12] determines

whether a player has entered flow during an activity (Table I).
It contains nine items, and the scores of each one represents a
dimension of flow. The scale is designed as a post-event assess-
ment of flow, with instructions written to connect the subject
to a recently completed activity. A more accurate evaluation
of the flow state is possible when the scale is administered
close to the end of the game. Responses range from 1 (strongly
disagree) to 5 (strongly agree). A low response value indicates
that the subject’s experience was not substantially of a flow
nature. Conversely, a high response value symbolizes that the
individual experienced flow substantially. The average score
of 3 on the status scales represents a choice of “neither agree
nor disagree”. This average score may indicate some degree of
approval, but it may also mean some ambiguity regarding the

item’s relevance to the person’s experience. Nevertheless, it is
reasonable to interpret moderate level scores as neither strong
evidence that the person has experienced flow nor strong proof
that the person’s experience did not include the flow.

B. Results

The age of the 40 participants ranged from 18 to 42
years, with a mean age of 27.3 years. More than half of
the participants played video games more than 5 hours per
week (see Figure 5). Also, more than half of the participants
considered themselves beginners (see Figure 6).
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Fig. 5. Hours per week that participants play video games.
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Fig. 6. Subjective skill level of the participants.

Let’s start the analysis with the participants’ favorite version
of Tetris. In the last question of the experiment, participants
chose which of the 3 games they liked the most. Figure 7
shows the percentage of times each version was chosen: 20%
of the players selected the normal version, 27.5% selected the
trivial version, and 52.5% selected the balanced version. If
we analyze the results filtered by the player’s subjective skill
level of Tetris (the level they believed they had in the initial
questionnaire), the balanced version was chosen twice as often
as the next version (trivial) by both beginners and intermediate
players. The advanced player also chose the balanced version,
and the player who had never played Tetris before chose the
trivial version.

The main goal of the experiment was to determine which
version of Tetris generates the highest flow state. Since there
were 40 participants and each of them played the 3 versions
of Tetris, we had 40 SHORT Flow State Scale questionnaires
for each version of Tetris. We compare Tetris versions in pairs
in order to determine whether a version of Tetris produce a
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TABLE I
EACH ITEM FROM THE SHORT FLOW STATE SCALE AND THE DIMENSION IT REPRESENTS [12].

# Dimension Sentence
1 Challenge-Skill Balance I felt I was competent enough to meet the demands of the situation
2 Merging of Action and Awareness I did things spontaneously and automatically without having to think
3 Clear Goals I had a strong sense of what I wanted to do
4 Unambiguous Feedback had a good idea about how well I was doing while I was involved in the task/activity
5 Concentration on the Task at Hand I was completely focused on the task at hand
6 Sense of Control I had a feeling of total control over what I was doing
7 Loss of Self-Consciousness I was not worried about what others may have been thinking of me
8 Transformation of Time The way time passed seemed to be different from normal
9 Autotelic Experience I found the experience extremely rewarding

TABLE II
AVERAGE FLOW STATE PER TETRIS VERSION AND P-VALUE.

Average Flow p-value
normal balanced trivial normal vs balanced balanced vs trivial normal vs trivial

Flow score 3.778 4.000 4.003 0.001 0.973 0.033
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Fig. 7. Favorite version filtered by subjective skill level.

statistically significant higher flow state than other, by running
a paired t-test for every considered pair of versions: normal
vs. balanced; balanced vs. trivial; normal vs. trivial. Since we
are running 3 different comparisons for the same dataset, we
apply Bonferroni correction [29] and instead of considering a
Type I error rate of 5% [30] we use a significance threshold
of 0.017% (≈ 0.05/3).

As shown in Table II, the average flow score of the balanced
version (M=4, SE=0.602) is significantly higher than the
average flow score of the normal version (M=3.778, SE=0.54)
with p < .017. Therefore, we accept H1: we get more players
to experience flow using DDA.

To test H2: it is harder for beginners to experience flow
compared to intermediate or advanced level players, we
grouped participants according to their actual skill level (in
contrast to the subjective skill level used before) using their
final scores in the normal Tetris games. 21 participants were
classified as beginners and 19 as intermediate players. We
found no significant differences between the average flow
scores in both groups of players, so we reject H2. However,
if we separate the data and run again the paired t-test for
beginners (Table III) and intermediate players (Table IV)
separately, we get additional insights. For beginners, both the
balanced and trivial versions provide significantly (p < .017)
higher flow than the normal version, while for the intermediate

players it is only the case with the balanced version.
To test H3: If we provide an easy Tetris version to players

with a low skill level, then they will experience flow we
compared the trivial and normal versions of Tetris within
the group of beginner players. Both the balanced and trivial
versions of Tetris are easier than normal Tetris. The balanced
version adapts the challenges to make them easier when
necessary, while the trivial version always provides help. The
average flow score of the trivial version (M=4.037, SE=0.628)
is significantly higher than the average flow score of the
normal version (M=3.778, SE=0.415) with p < .017. These
results show that both versions providing easier challenges
helped beginners to experience flow more strongly than in
normal Tetris. Therefore, we accept H3.

Finally, we accept H4: if Tetris is too trivial, then the players
will not experience flow, because the resulting flow in the
trivial version is not significantly higher (p < .017) than the
flow measured with the normal or the balanced versions in
our experiment (see Table II). Nevertheless, if we consider
just beginners (Table III) then flow in the trivial version is
significantly higher than in the normal one, so we could reject
H4 for beginners.

C. Discussion

According to our results in this experiment, we can conclude
that:

• The average flow experience when playing a balanced
version is significantly higher than when playing the
normal version.

• The average flow experience from the balanced version
is not significantly higher than the trivial version.

• For beginners, both the trivial and balanced versions
improve the flow experience compared to the normal
version.

• We have no evidence that it is harder for beginners to get
into flow compared to intermediate and advanced players.

We expected players to find the trivial version boring
compared to the balanced version, but that was not the case.
This is probably due to the fact that most of the participants
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TABLE III
BEGINNERS’ AVERAGE FLOW SCORE PER VERSION AND P-VALUE .

Beginners
Average Flow p-value

normal balanced trivial normal vs balanced balanced vs trivial normal vs trivial
Flow score 3.788 3.979 4.037 0.010 0.295 0.004

TABLE IV
INTERMEDIATE’S AVERAGE FLOW SCORE PER VERSION AND P-VALUE.

Intermediate Players
Average Flow p-value

normal balanced trivial normal vs balanced balanced vs trivial normal vs trivial
Flow score 3.766 4.023 3.965 0.003 0.689 0.159

in the experiment consider themselves beginners and had not
played Tetris for a very long time, so they were happy to play
an easy version of the game. Besides, participants scored better
on the trivial version (average score 4720) than on the balanced
one (average score 3659) and that can influence the answers
to the questionnaire. In addition, each game lasts about 3-5
minutes and that is probably not long enough to get bored
even if the game is very easy. We believe players would find
the trivial version tedious if they had to play it more than a few
minutes. Furthermore, the balanced version was chosen as the
favorite one by 53% of the participants so we can conclude
that the balanced Tetris version provides a more rewarding
experience than the trivial one.

Regarding the limitations of the study, we have identified
some aspects that should be further investigated in the future.
First, the 40 participants were related to the computer field,
so they may not be representative of the general population of
gamers. Second, our study does not consider personal charac-
teristics that cause some people to experience flow with greater
or lesser difficulty and intensity. Third, our study focuses on
beginner or intermediate players, and the balanced version that
we use in the experiment only decreases the difficulty of the
game, never increases it. It would remain to be studied how
the dynamic difficulty adjustment affects expert players who
need greater challenges. Finally, our experiment only considers
very short game sessions. In would be interesting to study
longer periods of time to see whether the difficulty of the
game evolves in line with the player’s improvement.

V. CONCLUSIONS AND FUTURE WORK

This work presents a novel methodology that serves as a
guide to implement DDA in video games using ideas from
the theory of flow. Our methodology is divided into 2 phases:
pre-analysis and online game play. During pre-analysis we
collect and analyze game traces to identify the most relevant
game variables to assess the performance of the player. We
also create a case base of game fragments labeled with the
player’s skill level and a satisfaction scores. The second phase
takes place during the game and continuously predicts the
current player’s profile and decides when and how to adapt
the difficulty of the game. To predict the player’s profile we
compare her performance during the last performance window
with those stored in the case base. In turn, the decision whether

to alter the difficulty of the game depends on if the player
is in control, that we measure indirectly by comparing the
complexity of the last game states with the average complexity
of the games in the case base that were rated as good, too easy
or too difficult by other players with the same profile.

We have implemented this methodology in Tetris and
performed an experiment that shows that the average flow
experience is significantly higher using DDA that in the normal
version. We found no overall significant difference between the
flow experienced between the DDA and trivial versions. We
think this is because the participants were mostly beginners
with little experience playing Tetris and only played one trivial
game that lasted just 3 or 4 minutes and that was not enough
to find it tedious. Nevertheless, differences between trivial and
balanced versions can be found if we study beginners and
intermediate players separately. While we found a significant
difference for both versions with respect to the normal one in
beginners, for intermediate players we only found the balanced
version to be better than the normal one.

Although this work focuses on a particular game, we believe
that the proposed methodology is general enough to be applied
to a wide range of games. The main decisions that must be
made to use this methodology in a particular game are (1)
to identify the most relevant game variables to assess the
performance of the player during the game, (2) to decide
the length of the performance windows used for DDA, (3)
to define a function to measure the complexity of the game
during a performance window, and (4) to decide how to make
the game more difficult or easier depending on the player’s
needs at any given time. For example, in a classic game such
as Space Invaders the player’s performance could be measured
using variables such as the game score, the number of ships
and aliens destroyed, the number of shots that did not hit any
enemy, ...; new performance windows could be created every
10, 20 or 30 seconds depending on how often we want to
reevaluate the difficulty of the game, with values collected
every few seconds; the complexity of the game could be
measure using the speed of the aliens, their distance to the
ground, the amount of barriers remaining for the player to
cover, ...; and the difficultly of the game could be changed by
altering the speed of the aliens or their fire rate. Of course,
these are just ideas that should be tested and evaluated by both
game designers, who know in detail how the different game
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mechanics work, and data analysts who can find and verify
patterns in the game traces.

Our proposal has some limitations as well. We use a case-
based implementation and, therefore, we require a good case
base that effectively represents different types of players and
games (with a good coverage and diversity of cases). In
addition, the decision of using ex-post questionnaires instead
of real-time sensors to measure the player experience has some
advantages (it is a not intrusive approach and it does not alter
the player’s experience), but it also means that we only get
feedback about the whole game (or at least a level of the game)
so we cannot differentiate which specific parts induced more
or less flow in the player. As part of the future work, we would
like to research the use of non-intrusive devices to identify and
label good, too easy and too hard game fragments in the case
base. Note that those devices would only be needed during
the construction of the case base and not to perform DDA
once the game is released. The spectacular progress of smart
watches and bracelets in recent years makes us feel hopeful
in this regard. In fact, the use of these devices could also help
us to measure the effectiveness of a difficulty adjustment by
examining the subsequent biometric response of the player.

Although the methodology presented in this paper is gen-
eral, we have only tested it with beginner and intermediate
players making the game easier and never more difficult. We
would also like to test this type of DDA during longer periods
of time to see if the difficulty of the game evolves in line
with the player’s improvement. We are interested in the use
of DDA in serious games where keeping the player engaged
is critical to enhance learning over longer periods of time.
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