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Abstract It is the objective to provide a mathematical treatment of a non-
homogeneous and non-lipschitz reaction problem with a non-linear diffusion
and advection operator, so that it can be applied to a fire extinguishing pro-
cess in aerospace. The main findings are related with the existence and char-
acterization of a finite propagation support that emerges in virtue of the the
non-linear diffusion formulation. It is provided a precise assessment on differ-
ent times associated to the extinguisher discharge process. Particularly, the
time required to activate the discharge, the time required for the extinguisher
front to cover the whole domain, the time required to reach a minimum level
of concentration so as to extinguish a fire and the time required by the agent
to reach some difficult dead zones where the extinguisher propagates only by
diffusion and no advection. The equation proposed is firstly discussed from a
mathematical perspective to find analytical solutions and propagating profiles.
Afterwards, the application exercise is introduced.
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1. Introduction

An aircraft is equipped with a fire suppressant system whose intention is to extin-
guish any generated fire. The regulations, involved in the design process, require
the fire to be suppressed within a maximum elapsed time so that the aircraft safety
is kept during the operation. The typical models, used to predict the dynamic of
the fire suppressant agent, are based on numerical algorithms in CFD and a set
of testing campaigns to validate the numerical results. In some cases, the use of
simple modelling equations leads to significant testing activities (as examples see [4]
and [26]). Some designers consider that an extensive testing campaign, in a real
platform, is enough to characterize the dynamic of the fire suppressant in each
operational condition. Nonetheless, this is a costly task and, further, shall be sup-
ported by the construction of an empirical reliable model to predict the suppressant

TThe corresponding author. E-mail: joseluis.diaz@ufv.es(J. L. Diaz)
1Escuela Politecnica Superior, Universidad Francisco de Vitoria, Ctra.
Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcon, Madrid, Spain


http://www.jaac-online.com
http://dx.doi.org/10.11948/20210096

180 J. L. Diaz, F. Prieto & J. M. Garcia-Haro

concentration in any other condition.

Fire suppressant process typical models are based on a linear order two diffu-
sion [13]. In contrast, the use of a non-linear diffusion may produce further accurate
results specially related with the existence of a propagating suppressant front with
finite speed of propagation. The use of non-linear diffusion is an oblique topic
and has been used in other applications where numerical and purely analytical ap-
proaches have been followed. Such non-linear diffusion allows to model accurately
physical phenomena in which porosity is a governing parameter. The non linear dif-
fusion and the mathematical property related with propagation, as proposed along
this paper, has not been previously treated to model a fire extinguisher process in
aircrafts. Nonetheless, it has been applied to other studies. The following discus-
sion introduces some references of interest in virtue of the obtained results impact.
In [15], the authors develop a model to the spread of wildfires that consider dif-
ferent mechanisms at different scales that drive the fire process in wildlands. The
proposed set of equations are based on an energy balance to derive the classical dif-
fusion temperature equation that is supported by a computationally efficient and
easy-to-use algorithm.

Another approach based on multiscaling analysis on the energy equation with
classical diffusion is provided in [17]. In this reference, the authors analyze a new
equilibrium distribution function to overcome the observe inconsistencies of fluxes
at the interface of a fluid and solid with different densities or specific heat capacities.
Both mentioned references are of interest to describe recent relevant algorithms on
fire and reaction problems where the energy equation is employed. Considering
other areas of research, it shall be noted that the Darcy law involving nanofluids
has been considered in [27]. The authors show the different solution profiles ob-
tained after the numerical exercise where an exponential decay can be perceived.
Such an exponential decay is immediate in the linear diffusion case, nonetheless
for the non-linear diffusion further analytical assessments shall be done. In the
same direction, [27] describes the effects of swimming gyrotactic microorganisms
for magnetohydrodynamics nanofluid using Darcy law. In this case, the authors use
linear differential equations with variable coefficients that precludes the existence of
propagation principles characterized by the Chebyshev spectral collocation method.
Further, in [23] the authors study a non-newtonian description of a nanofluid with
nanoparticles volume motion via numerical assessment.

The effect of porosity in a partial slip for a peristaltic transport in a Jeffrey
fluid has been investigated in [21]. In addition [7] employs a non-linear diffusion
to improve the accuracy in simulating potential coagulation in an electromagnetic
blood flow in annular vessel geometries. In all the cited cases, the finite speed of
propagation defines a diffusive front. This is a common behaviour to all porous
medium equations and shall be characterized for the problem discussed along the
present work.

In relation with the techniques used along the presented analysis, it shall be
mentioned that they are based on analytical approximations under the parabolicity
condition in the non-linear diffusion. There are other positibilities to introduce
the analytical conceptions based on dynamical systems. For instance, in [30], the
author introduces the Raman soliton model for nanoscale optical waveguides in
metamaterials to determine periodic, heteroclinic and homoclinic solutions.
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2. Materials and methods

The methods followed along this research are based on an analytical approximation
together with a representative testing for the validation of each of the physical laws
and parameters involved.

The driving equation is based on a non-linear diffusion which is of relevance
to predict accurately the behaviour of the propagating front inherent to any dis-
charge process. The pressure induced by the discharge makes the suppressant to
travel along the domain with finite propagation. Such finite propagation feature is
precisely determined with a non-linear diffusion of the form [28]:

w =V - (u" V),
¢ ( ) 2.1)
m>1,

where u™ ! is referred as the pressure variable.

The proposed non-linear diffusion shall be justified further. For this purpose, a
flight test has been performed on a Airbus A400M instrumentalized engine nacelle.
Previously, it has been splited into several sections as per Figure 1.

Figure 1. Domain representation. Note that the sensors are placed close to each of the sections A, B,
C and D

For each section in Figure 1 a set of fire extinguisher sensors where located with
the intention of measuring the agent concentration along the domain, see Figures 2
and 3.

The extinguishing system design point shall consider the most demanding sce-
nario (i.e, the agent bottle at lowest temperature and highest dynamic pressure or
ventilation in the engine cowl). Then the flight altitude was considered at the lowest
level in cruise (150 ft) with the highest allowed airspeed (Mach 0.45) at ISA—70°C
and a bottle temperature of —55°C. The flight test used to validate the diffusion ap-
proximation in (2.1) consisted on a procedure for the flight crew to push on the fire
extinguishing button. Once the fire extinguisher was released, the sensors measure
the agent concentration per volume as per Figure 4.

Note that once the discharge begins, the agent starts to travel and at the stag-
nation condition at the entrance of each sensor, a finite propagating diffusion acts.
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Figure 3. Extinguisher sensor position and numbering for Section C (left) and Section D (right).

Initially, this indicates that (2.1) may be an appropriate candidate to model the
mass transfer procedure. A scaling analysis on (2.1) provides:

[u] ~ [D]==1 [T]==T, (2.2)

where D is a characteristic nacelle dimension (for instance the diameter) and T a
characteristic time related with the agent evolution. Considering the time evolution,
[u] ~ [T] 71, A particular relation between u and T can be obtained upon the data
in Figure 4. For this purpose, the main increasing rate is given for an interval of
1.3 seconds. This interval is considered and a particular analytical mean function

is determined: A
[u] ~ [T]? = m = 3 (2.3)
In addition, a non-linear advection (c- Vu?) is introduced to model the forced
convection induced by the pressurized bottle at discharging. A postulated reaction
term of the form |z|%u”, ¢ > 0 and p < 1 aims to account for the natural hetero-
geneity involved in all fire suppresant process. Note that the adequacy of each of the
involved terms (diffusion, advection and reaction) to model the fire extinguishing

process is justified in Section 3.4. In the same section, we determine the different
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Beginning of
discharge

Figure 4. Extinguisher volumetric concentration evolution upon fire activation procedure that is initi-
ated during the flight test used to validate the postulated diffusion. Each of the coloured lines represent
the measurements of a sensor located as described in the previous figures. Note that the horizontal red
bar represents a volumetric concentration of 6%. At 1.3 seconds from the beginning of discharge, half
of the sensors reach the 6% level.

time variables to build a physical sound of the extinguishing process. Particularly:
the time required for the suppressant to reach the whole domain including dead
areas outside the forced convection induced by the discharge energy.

3. Discussion and Results

Any formulated modelling equation shall be shown to exhibit certain mathematical
properties to ensure the existence and regularity of solutions. In addition and along
this chapter, the different solutions are determined and the application exercise
described.

The equation (Problem P) analyzed along the present work reads:

up = Au™ + |e - Vui| + |z|7uP,
u (x,0) = up(x) € L' (RY) N L=(RY), (3.1)
m>1,¢g>1,0>0,0<p<]1.

As described, the non-linear diffusion permits to account for certain mathemat-
ical properties of interest such us the finite propagating support. The non-linear
advection aims to consider the extinguisher induced energy and movement while
the reaction term accounts for an heterogeneous process. A fire extinguishing pro-
cess starts with the discharge of a fire suppressant agent that propagates along the
domain (in this case, the red zone in Figure 1). Such propagation is hypothesized
to be characterized by the Problem P based on the following rationale:
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e The non-linear diffusion aims to model the finite speed of agent propagation
along the domain as measured in Figure 4. Once the discharge occurs, a
diffusion interface exists that segregates between zones with agent (v > 0) and
zones without agent (v = 0). The introduction of such interface is relevant to
consider complex geometries, as it is the case of the aircraft engine nacelle.
In such nacelles, there might by certain zones, out of the advection influence,
where the non-linear diffusion is predominant (zones known as dead zones).

e The non-linear advection represents all kind of forced propagation. Once the
bottles activates, the pressurized fire suppressant starts to populate the engine
nacelle. Such process releases an energy that was previously confined within
the bottle and that is considered to induce a force convection.

e The reaction term functional behaviour introduces the natural saturation in
the agent evolution and the heterogeneous distribution along the domain. The
extinguisher propagation process is fast at the beginning as there is not sup-
pressant in the engine nacelle. Once the discharge occurs and the suppressor
evolves, the agent increases while reducing the time rate (u;). This principle is
introduced by the term «? (p < 1). In addition, the agent distribution along
the domain is heterogeneous. The discharge nozzles are placed in different
positions, so that the time rate varies with the position, and such variation is
according to the law |z|7 (o > 1).

3.1. Existence and uniqueness

Firstly, consider the following definitions

Definition 1. Consider f € C?T71+7/2(R? x (0,T)), f™ € C**7(R4 x (0,T)) for
~v > 0 such that the operator L is defined as:

Lf=f,—Af™—c-VF. (3.2)

Note that the diffusivity in P is D(u) = «™~?!, which is positive provided u > 0
globally or locally in the classical ball of radium R (Br € R?). This positivity
condition prevents the degeneracy due to the non-linear diffusion in u. The previous
works in [3,5,6,19,29] and [14] proved the existence of solutions for an aggregation
equation with no reaction-absorption term. Nonetheless, the lack of a Lipschitz
condition in P makes the equation in w to loss the regularity introduced by the
positive diffusivity. Consequently, our aim is to show the existence of solutions by
the use of the cited references and considering, in addition, the specific existence
questions introduced by the non-Lipschitz reaction term.

The interior regularity of the parabolic operator permits to consider the following
definition:

Definition 3.1. Consider two possible solutions @ and @ € C?+7 1+7/2(Rx (0, T')).
The function @ is an upper solutions if:

La > |z|7aP. (3.3)
The function @ is a lower solutions if:

Lu < |z|7aP. (3.4)
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Note that:
(z,0) <wu(z,0) < a(z,0), (3.5)
where
a(z,0) = u(z,0) + v, 4(z,0) = u(z,0) — v, (3.6)
being
0 < v < min{u(z,0)}. (3.7
z€R

We define the monotone sequence {’U/(k)}k-zovl’z_” with u(© = ug(z), such that:

u" = A" e V(B a7 (@D,

(3.8)
u©(z,0) = up(z), k=1,2,3...

With the intention to prove the monotone and ordered behaviour of {u(*)}, the
recurrent approach in Ch. 12 of [24] shall be followed. In addition, the existence of
solutions for each u(¥) is ensured based on the fact that the operator L is positive for
a positive f (refer to Ch. 3 [28] and Theorems 2.1 and 2.2, Ch. 7 [24]). Therefore:

i < a*f ) < gD < g, (3.9)

and ordered:

a®) > G+, k) < gk, (3.10)

Note that {a(*)} is non-increasing while {@#(*)} is non-decreasing. Such monotone
and ordered features permits to postulate the following existence theorem:

Theorem 3.1. Assume u > ¢ > 0 in the ball Bg x (0,T), then, the sequences
{a®™} and {a®} € 0?7 1+7/2(Bg x (0,T)) are convergent.

Proof. Consider the test function ¢ € C*°(Bpg), such that for 0 < 7 <t < T, the
weak upper and lower solutions ¢*) and @(*) read:

/’mm@¢w=/<w+wmwm>
Br B

" t
+/ / [0 ¢, + 2™ Ap + ¢ - Vo a®a 4 ||7a®P glds,
0 Bgr
(3.11)
/’mmwww:/<w—wmmm>
BR BR
t
+/ / @ ¢ + @™ Ag + - Vo a7 + |z]7a kP glds,
0 Br
(3.12)

where limy_, o, ¥ = 0. Now, we make use of the dominated convergence theorem to
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have:

/ lim a®)(t) ¢(t)
B

R k—o0

_ / (uo+ lim v(k)) $(0)

k—oco

/ / [lim @® g+ lim @)™ Ag+e- Vo lim aM14|z|” lim a®” glds
Br

k—o0

(3.13)

/ lim @®)(t) ¢(t)
Br k—o0

- / (w0 — lim v(k)) 6(0)

/ / khm a®) qbt+ hm ™ Ag+c- Vo hm a®a4|z| hm a®? ¢lds
Br — 00

(3.14)
after substraction:
[ Jim @ -2 o0
Br k—o0
/ / Cim (@® — a®)Y g, + Tim (@®™ — 50 m) A (3.15)
Br k—)oo k—o0

+c- Vo lim (4 (kg _ g (k)ay 4 |z) Jim (@®P — g *P) g ds.
— o0
Consider M = max{|z|” } 5, together with the condition u > e > 0:
/ lim (2™ — a™)(t) ¢(t)
Br k—o0

/ / [ lim u(k) — u(k)) s + hm ( (k)m—l(ﬁ(k) _ a(k))) Ao
Br

k~>oo

1
. im (a®a—1g5k) _ 5k ] nk) _ (k)
+c-Vo kli)n;o(u (4 a™)) + Mkli,n;o (ﬁ(k)lp (@ @ )) ¢lds
(3.16)
the last inequality holds when @) — @) on the right hand side, so that we
conclude on the convergence of the left hand side integral. Additionally, the regular

convergence in the upper and lower positive solutions permits to state that such
solutions satisfy the regularity embedding;:

I/ (By % (0,T)) € LN (0,T); WY (Br) N WHL((0,T); L' (Bg)). (3.17)

O

Theorem 3.2. Assume u > € > 0 is a solution to P in R? x (0,T), then u is
unique.
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Proof. Consider 4 is a maximal solution to problem P in R¢ x (0,7 such that:
@(x,0) = up(x), (3.18)

defined as:
Gy = AW 4 ¢- V4 + |x| 74P, (3.19)

In addition, consider the minimal solution w:
up = Au™ 4 ¢ Vul + |z|7uP,

u(z,0) = up(x).

(3.20)

Then, upon definition of a test function ¢ € C>°(R?), the following holds:
0< [ @-umol)

Rd
t
- / (6 — u) d¢ + (@™ — u™) Ap + - Vo (@7 — u?) + |z[7 (@ — uP) ¢]ds.
0 R4

(3.21)
Now, define:
% for 4 Z u
ai(z,s) = ; (3.22)
mu™ "' otherwise
such that for two fixed values of x and s =¢ < T
0 < ar(2,5) < ex(m, o oo, T). (3.23)
Consider the particular test function:
(|, s) = T (14 2)?) 7, (3.24)

for some constants k and ~.
The test function verifies:

¢t = 7k¢('ra S)v |v|z\¢| < 63(73 d)¢($, S)a A\a:|¢ < 04(’77 d)¢(x7 5)7 (325)
such that:
(6—w) 0 + (0™ — u™) Ap+ ¢ Vo (a7 — u?) + |27 (4% — uP) 6

3.26
<—(b—uwko+ai(t—u)cad+ cegpar(i—u) + Ly (0 —u) @, (3:26)
where L; is the Lipschitz constant.
The constant k shall be selected such that:
—k+4+ajcs +ajese <O0. (3.27)
It suffices to consider:
k> ai(cq + c30), (3.28)

so that:
(=k + a1cq + arcze)p(a —u) < 0. (3.29)
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The expressions (3.21) reads:

t
0< / (i — u)() (1) < / / Lo (it — u) éds. (3.30)

R4 0 JRI
Making the d/dt, considering the smoothness of the test function and the Holder

continuity of solutions in (3.17) the following holds:

o< [ @—wwen < / Ly (i — u)(t) 6(t). (3.31)

- dt R4 R4

This can be shown considering the following:

g @=wwem = [ (F@-00-Ka-0o) o
< [ Gla-uew.

re dt

Given the Hoélder continuity in the first time derivative, it is possible to find a
suitable constant (admit this is L) so that:

/]Rd %(ﬂ —u)t)o(t) < /}Rd L (@ — u)(t) 6(t). (3.33)
Now, define:
o) = [ a=u)®)ol) (3.3
then
d%t) < Lig(t), (3.35)

with null initial condition g(0) = 0. The equation (3.35) is verified by the null
condition g(t) = 0, then & = u. Similarly and returning to (3.30):

0< / (@ —w)(t) B(t) < 0, (3.36)
]Rd
to conclude:
= u, (3.37)
showing, then, the uniqueness of any positive solution to P. O

3.2. Main estimates and blow-up existence

Consider the following initial condition with R € (0,00) and € > 0 arbitrary small:
wp=0in Bp={R—€<|x—x0| < R+ €} (3.38)

The non-Lipschitz reaction induces non-uniqueness. Then, there exist two envelop-
ing solutions: A trivial subsolution 4 = 0 and a supersolution of the general form:

i = Kla|'(t — 7)°, (3.39)
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where 7 > 0, v > 0 and K > 0 to be determined. Upon substitution into P:

2| Ka(t — 7)™ =my(my = 1) ™ 2EK™ (¢ — 7)™ + K qy|a| Tt — )
+ |2 [PYTOKP(t — 7). (3.40)

Note that the slow diffusion (m > 1) makes v = 0 in compact subsets of Bg,
therefore in such compact subsets the advection and reaction are considered to be
predominant over the diffusion. After an elementary calculation making ¢y —1 =
py+ o

1
=22 (3.41)
q—7p
A positive value for « is obtained making o — 1 = ap:
1
= —. 3.42
0= (3.42)

Now, K is expressed as K = K + K5 where K is obtained considering the reaction
only and K the advection term separately:

el _ q—p o
B=0-p7r K (QO—pXU+U> ' (343)

As a consequence:

N 1 q—p 1 ol N1/(1—p
Ur—0 = <(1 —-p)Tr + <q(1—p)(a+1)> ) |z« (t) /(-p), (3.44)

The maximal solution (3.44) is valid provided that the advection and reaction are
predominat over the diffusion:

gy —1>my—2, (3.45)
and considering the expression (3.41), we have:

oc+1 q—0p
< .
c+2 m-—p

(3.46)

This last condition can be used to distinguish between the following results depend-
ing on the data parameters for P:

+1 a—p
57-1-2 < m—p"°
The advection and reaction terms are predominant. The non-Lipschitz con-
dition in the reaction induces non-uniqueness and a supersolution @ and a
subsolution @ = 0 have been obtained for initial data as per (3.38).

1 — 2
s 2> orm> (22) (g-p)+p.

The diffusion is predominant and we can expect a finite propagation in com-
pact subsets of Br. A solution for this case is precisely assessed in Theorem
3.5.
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The next intention is to provide a condition to distinguish between the existence
of a global solution and the explosion in finite time with the definition of a critical
exponent p*.

Theorem 3.3. Consider the critical exponent 0 < p* < 1 defined as:

1
p* = inf{ <q— Z(o—kl)(m— 1)> 1} (3.47)
+
For:
p>p, (3.48)
blow up or explosion in finite time exists, while for:
p<p’, (3.49)
a global solution exists.
Proof. Consider the self-similar profile:
Gz, t) =t~ f(ja[t”), &= |zlt". (3.50)

We make d =1 in the sake of simplicity. Upon substitution into P:
—at™ T f g Bt T = pmemy2B o fa y go—oBmap fP o (3.51)
~—~—
13
Making the following equalities in (3.51):
—a—1=—-am+28, —aq+ S =—Foc— ap. (3.52)

So that:
c+1
2((p—q) + (0 + 1) (254))’

The existence of finite time blow up requires:

B=q—p. (3.53)

o =

2((p—q)+ (0 +1) (2) >0, p>(¢—(@+1)(m—1)). (3.54)

So that, the critical exponent is defined as:
" 1
p* = (q ——(c+1)(m-— 1)) , (3.55)
4 +

and blow up exists if p > p* while global solutions exists if p < p*.
Note that 0 < p* < 1 in accordance with the data condition 0 < p < 1. In
addition, p* = 0 corresponds to the case of:

(4= o+ Dim-1) <0 > <q—i<o+1><m—1>)+—o. (3.56)

Then, the appropriate interval for p* is:

0<p*<l, (3.57)
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which is achieved as per the expression:
1
p* = inf{ (q - Z(O’ +1)(m — 1)> , 1} (3.58)
+
O

Our next intention is to determine a precise estimation from below to account

for the propagation features of the solutions to P:
Theorem 3.4. Given tg > 0, the following propagation estimates hold:

o |t — to‘ <<1 ]

2] < 24%| log(t — to)|?, (3.59)
o [t—to|>>1, 1—-p>m—gq

1 2(1-6)+3
|z < (2pA°) 7 T (3.60)
e [t—to]|>>1, 1—-p<m-—gq
5m—(3+2q)
e (3.61)

|z] < 2AeAF=T T
where i, 0, X\ are constants depending on the data parameters q,m and p. A is
chosen such that the propagation results from a subsolution to P:

(3.62)

0< A<t m&%{{vo(x)} + |z|[log to| 2.

Proof. Firstly, the pressure variable v reads:
_ m m—1
v= gt (3.63)
such that the problem P adopts the form:
vy = (m — 1)wAv + |Vu|? + e - V| + plz|70°, (3.64)
where
A=-9_, 0= ﬂ,
m-l ) -t 5 (3.65)
=PEnE n=m ()"
(3.66)

Consider the following propagating wave function (refer to [19]):
1
w(x,t) = - (A — |z|(log(t — to))_%)
+

where A > 0 and ¢y > 0 are selected so that w(z,t) is a subsolution to P. We make
the calculation assuming ¢y = 0. Then:

(A — \x|(logt)_%) + % <A+ |x|21t(logt)_g>

q—1

_ 1
=
<z (A (ogty 1) 4 M85 (A [af(logt) 1)

m—1

: (4~ (ogty~+) (367)

+ )7t (A - |x\(1ogt)*%)
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The following inequality holds provided log¢ > 0. In case not, it suffices to consider
a tg > 0 such that log(t — to) > 0. Note that, we continue operating with logt > 0
for the sake of simplicity:

1 g q— q—
%§A+|m|%(logt)_% < ZAZp et T Amer 2]t 0 A9 (3.68)

| =

1
—(logt)™
757 log: 1

Upon recovery of the ty translation, we have:

3
2

|z <24%(log(t — t))* + 2Ae(t — to) w1 Aw1 T (log(t — t))

5 (3.69)
+ 2p1fe|7 (¢ — t0) =0 A (log(t — o)) .

We consider the first term on the right hand side to only account for the log profile.

This means: X

lz| < 2A%|log(t — to)| (3.70)

In addition, we assess the case t >> ty under the conditions 1 — p > m — ¢ and
1—p<m—gq. For the case 1 —p > m — ¢, we have :

1

1o _1 (1-96)
2] < (2ut' A% log 1)) 77 < (2u4”) T £ (3.71)
In the case of 1 —p <m —gq:
m— - — 5m—(3+2q)
2] < 20t m=t AT (log 1) < 2AeARTT T B (3.72)

Note that the w profile (3.66) is a subsolution, then an appropriate value for A is
obtained as:

1 1
(e to) = vole) > - (A~ el los(to)) ~*) - (3.73)
It suffices to consider:
0 < A < tomax{ug(x)} + |z||log to| 2, (3.74)
which concludes the proof. O

Our next objective is to provide a precise subsolution for u in the proximity of
the propagating support. For this purpose we consider a selfsimilar solution (3.50)
so that the following theorem holds.

Theorem 3.5. Consider the selfsimilar solution (3.50) with t > 1, we search for
a bell shape solution f satisfying:

f(€) >0, for 0<&<&, and (f7)(%)=0. (3.75)
(f1)(©) <1, for ©€ (& —¢&o), (3.76)

for € arbitrary small. Then, the following estimation holds:
£(&) = ela, B,d,m,p) 7 |2 77, cla, B,d,m,p) = (—a+ Bd) T, (3.77)

Jor 0 < < &.

In addition, the support & is obtained upon distinction of two cases depending
on the relative strength for the advection and diffusion:
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e q>m — 1.The evolving support is:

(—a+ pd)=0

o(m—1)
50 = Csu ‘-Tl 2= Csupp = (378)
pp pp ((m71)5> 1/2
2m
e g<m—1. The support is R%:

o — 0. (3.79)

Proof. Consider the following problem:
up = Au™ + |c- Vud| + |z|7u? > Au™ + |¢- Vul| + H 4, (3.80)

where

H, , =n°min{u?,4*"'u}, n >0 and v >0, (3.81)

is a lower estimation to the reaction term that is recovered in the limit with n — oo
and v — 0. Therefore, the following problem (Ps) provides a subsolution to P:

u = Au" + |c- Vul| + Hy . (3.82)

The function H, , satisfies the Lipschitz condition. The existence and unique-
ness of solutions can be shown by a standard approximation on expanding domains
(refer to [2,14,18,19] for further assessments).

The following equation permits to assess a precise solution for the evolving tail
F(jz|t?) in (3.50) for € € (©,&):

d—1

—atmO T BETOTH = () 4 T(fm)/ +Hyn, (3.83)
where:
Hoyn(f,8) = n7 min{ f?, 47~ 1200 £}, (3.84)
so that
Hy(f,8) = n min{t=o f7, 471470 f}. (3.85)
Now, consider ¢ (to be assessed) such that:
H"/,’I’L(f’ t) > n? C1 f (386)

and ¢; can be chosen as ¢; = n=7(—a + 8d) for the sake of simplicity during the
resolution of (3.83).
A subsolution f to the bell shape tail is given by:

d—
BEL = (") + S (1) + . (3.87)
This equation is of elliptic type with solution [9]:
_ 2\ =L _ (m—1)p

which is valid for a sufficiently large time to hold the inequality (3.86):

n? min{ f?, AP~ 1PV Y > nf ¢ f — min{fP, AP PV > ¢ . (3.89)
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For the sublinear evolution:

AP > = (o 4+ Bd). (3.90)

Consider the relation n = % to assess the effect of v and n?.

An explicit value for ¢, is obtained from (3.90):

_ 1\ a0»
ty = (~a+ fd)Tm A~ (7> . (3.91)

The expression (3.88) is a subsolution for ¢ > t,.
Any solution to Pg is indeed a subsolution to P as H.,, < n°uP. To show this,
consider w to be a solution to P and u a solution to Pg at t = t,. For any 7 > .:

w(z, 1) > u(z, ty), (3.92)
fort > 0:
w(z, 7 +1t) > u(z,t, +1). (3.93)
In the limit with 7 — 0:
w(z,t) > u(z,t), z=€R. (3.94)

Showing that u(zx,t), solution to Pg, is indeed a subsolution to the problem P.

Now, note that our intention is to determine the evolution of the tail in the
proximity of the support. For this purpose, consider that such tail is the asymptotic
evolution departing from & = 0 in the expression (3.88). This approach is required
to determine a value for A:

[ =Am-—T, (3.95)

Such value for A can be determined from (3.89) making & = 0:
min{A%,’yp_lto‘(p_l)} > n % (—a+ pd). (3.96)

So that, in the minimal approximation:

Aw=T = n~’(—a+pd), > A= n (—a+ 5d)7p”%11 =c(a, 8,d, m,p)nd(lni;l)
(3.97)
Considering the spatial variable |z|:
Alw) = er(a, B,dym, p)le] T (3.98)
So that, the evolution of the maximals in f is given as:
1 o _
f(é.) = Cl(aaﬂadamap)miqx'lip' (399)

The searched function f satisfies: (f7)'(&y) = 0. As a consequence, two cases shall
be distinguish upon comparison of the parameters related with the advection and
diffusion:
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e ¢ > m — 1. In this case, the evolving support is determined as:

(1/2)
ro=o=e=(5) .

1 (1/2) o(m—1) o(m—1)

&0 = —————pel!/ P B ) 3T = oy lo]
(“5) (3.100)
supp (M)1/2
2m
* ¢ <m— 1 The support is R, i.e. {o — oo. O

As a consequence of the previous theorem, given a local = x, any solution to
P satisfies the following estimate:

w(xo, t) >t %1 (o, B,d,m, p) 7T || TF . (3.101)
And in relation with the support:
e g>m—1:
o(m—1) 3
|z — 20| < Coupplz| 2T ¢7, (3.102)
e g <m — 1. The support is not finite.

Returning to the expression (3.51), we can distinguish between two cases to
assess the asymptotic behaviour of solutions.

o If —am+28 > —aq+ B: In this case and when ¢ >> 1, the resulting equation
is as per (3.83) whose solution has been obtained in Theorem 3.5.
o If —am + 28 < —aq+ B: The equation (3.51) adopts the following form at
t>>1:
—at T 4 Blatl T = et WP fI 4 g7 mep (3.103)
~—~—
3
Considering this last equation, the following lemma holds:

Lemma 3.1. The self similar profile for (3.103) is of the form:

o Ifg>1:

£(€) = (W)qaﬁqll. (3.104)

cq
o Ifg=1: i
f(&)=(BE—c)7. (3.105)

Proof. Assume the asymptotic separation of variables:

F(€) = e () +(€) +... where e9©) < [(€)]+]8(€)| as € — oo, (3.106)
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where ¢'(¢) > 0. Counsidering the case ¢ > 1 and the leading terms in (3.103), we
have:

— o= ngle(q—l)g — g(g) — log <_a(cqq_1)§> - . (3107)

Then, it suffices:

£(€) = (Ial(q—1)>q11§qi1. (3.108)

cq

In case of ¢ = 1 and considering again the leading terms in (3.103):
—a=(c—pEg — g(&) =log(BE — )7, (3.109)
so that f(&) = (8¢ —¢)?. O

3.3. Finite speed of propagation

The Porous Medium Equation, with or without advection, exhibits the well known
property of finite speed of propagation whenever the solution tends to zero (as it
is the case of compactly supported functions). Our objective is to characterize
such finite speed of propagation and to determine a sharp estimation of the waiting
time. The approximation follows some already available results in [9,10,14] and [12],
although we introduce significant differences to account for a wider generalization.
For this purpose, we make use of the pressure variable so that the resulting equation
is as per the expression (3.64).

Theorem 3.6. Consider xo € R, Ty > 0, D > 0 and € > 0 with e << 1, such that
the following function in the pressure variable:

w(z,t) = D]z — x0|*(Ty — t)?, (8> 0), (3.110)

is a local supersolution in Q = {|z —xg| <€, 0 <t < Ty < 1}. Where Ty is the
mazimal waiting time to be determined.

Proof. We require w(x,t) to be a local supersolution in w, therefore:
wy < (m — DwAw + |[Vw|? + M®|c - Vw| + plz|w?, (3.111)
where A, 0, pi, 6 have been defined in the set of expression (3.65). In addition
w(z,0) <wvo(z), |r—m0| <e€ (3.112)

and
w(zg tet) <v(zgxet), 0<Tp. (3.113)

Considering the expression (3.110) and replacing into (3.111):
Dz — x0|*B(Ty — t)°~1 — (m — 1) D?|x — xo|>*~2(Ty — )P a(a — 1)
— D% |z — xo 2 (Ty — )% — ADOF |z — ao|% (T — )PP e (3.114)
— plx — a:o\”"'“é(To - t)’% > 0.

To determine particular values for o and 8 consider:

a = max{ag, as}, (3.115)
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1
a; =201 — 2 = ap =2, 90&2+0¢2—1=O’+0¢25—>O¢2:10’T_g+6.
1

R (3.117)

(3.116)

Note that 6 < 1 then 8 > 0. For the sake of simplicity, consider the translation to
=0, so that (3.114) reads:

De“BTY ™ >(m — 1) D22 T2 a(a — 1) + D222 V1P

(3.118)
+ AD0+1€904+0¢—1T02/3QC+ Mea+a5Té35.
So that:
T < it :
0 — (m _ I)DEQO‘_QOL(Q _ 1) + DO[262(O‘_1) + )\D0€6a+o¢—lac + ILL€J+O‘5D6_1
(3.119)
Note that we have required T < 1, then it suffices to consider:
_ _ 1 B/2
_1D2a2 _1D22(a1)>a7_>D> .
(m=1)De a(a=1)+Da’e =€ 627 1= (m—1)e*2a(a—1)+a2e>2
(3.120)
In addition:
1 B 5
0 ba+ta—1 apn= €
AD%¢ ac> € 54, — Dy > (4)\6‘9a+a1ac> (3.121)
1 e 51
o+ad no—1 a
We consider:
D= HlaX{Dl,Dg,Dg}. (3123)
O

In addition and for the case with m > 2, the expression (3.64) (for v — 0) is
an order one equation that can be solved along characteristics with the maximal
solution:

1

W(a:,t)a(btJrr) , r=|z|, neNN. (3.124)

n
+

Note that a and b > 0 are constants to assess. In particular, for 0 < 7 < Ty (where
Tp is given in (3.119)), bt = 5=, where b shall be determined. Then:

1
W(z,t)=0 for r< o and 0<t<T (3.125)
n
Admit that any solution to (3.64) (with v — 0) is bounded. Then:

v(z,t) <K for x€eR, 0<t <7 and Ki(p,||vollco)- (3.126)

Our intention is to make W (x,t) a maximal solution:

> K. (3.127)

1
W(x,t) > v(z,t),— a <bt—|—r - >
"+
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Consider now any r > % Assume r = % so that for t = 0:

2 1
a(—) > Ki, a>nkKj. (3.128)
non),

We have built a supersolution W (x,t) > v(x,t) in r = % and 0 <t <71 <Ty To
determine b, the following condition holds:

W, > [VW|?, (3.129)

and considering that W; = ab; W,. = a, then b > a.
According to expression (3.128) and the determined condition for a and b,
W (z,t) is a local supersolution:

2
W(z,t) > v(z,t), 0<|z|< - 0<t<7<Tp. (3.130)

The inequality (3.130) permits to conclude that any local supersolution satisfies the
null criteria (or finite propagation speed) in the waiting time 0 < 7 < Tj, then, any
minimal solution v(z, ) satisfies such null criteria in 0 < 7 < Tj.

3.4. Applications to a fire extinguishing process

A flight test, with a fire extinguisher release, is required to determine each of the
involved parameters in P. For this purpose, the nacelle has been split in four
different compartments hosting the sensoring equipment (Figure 1).

Table 1 provides the agent volumetric concentration measured by each sensor.
All measurements are given at a snapshot time of 3 seconds to ensure a well es-
tablished discharge out of any initial turbulence. Note that the selection of the 3
seconds is particular to the discharge process modelled. In any other case, a dif-
ferent snapshot time may be selected depending on the required time for stabilized
measurements.

0.24 C T T T T T |

0.22 + .

0.2 1

0.12 - A
0.1} A

0.08 A

Figure 5. fire suppressant concentration (H) represented versus the axial variable x (meters)
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Table 1. Suppressant agent concentration at t = 3s. This local in time behaviour is considered to
determine the parameters involved in the model

Sensor section | longitudinal offset (m) | % Volumetric concentration at t = 3s
A 1,200 7,5
B 2,000 10,5
C 2,800 14,5
D 3,600 23,5

Once the fire alarm appears in the aircraft cockpit, the crew enables the fire
automatic process and the bottles release the suppressant. At this moment, we
consider that the reaction term is more significant than the non-linear diffusion.
This assumption is sensible as the discharge time is qualitatively fast. The data in
Table 1 is represented in Figure 5 and follows a potential law:

u = 0,1461|2|"3277 (3.131)

which is used together with the expression (3.44). Note that we only consider the
influence of the reaction (K7 ):

iryo = (1= p) ™7 |2 77 (3) 77, (3.132)
then, we have:
1 1
(1—p)T5(3)T% =0, 1461, (3.133)
which provides a value for p:
p=0,78. (3.134)

Note that p < 1 as it was previously assumed. Additionally, we can obtain a value

for ¢ and o considering;:
o+1

=0,3277. (3.135)
q—p
As 0 > 0, the previous expressions provides:
q > 3,832. (3.136)
Then, we consider ¢ = 4 so that:
o =0,055. (3.137)

Considering that the reaction wins over the diffusion:

o+ 2
—_— — 7,0521 1
m<(g+1)(q p)+p — m<7, (3.138)
then and as per expression (2.3)
4
m=g. (3.139)

The existence of global solutions requires to check if p < p* as per Theorem 3.3.
Note that p* is given in the expression (3.47), then:

p<p" — 0,78 <3,907. (3.140)
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Thus, there exists a global solution expressed by (3.44) that adopts the particular
form:
a(z,t) = 0,00102|2|*3277¢4:545 (3.141)

where
0<u<l, (3.142)

and = (meters) and ¢ (seconds) are the spatial and time variables.

The fire extinguishing starts with the fire bottles activation. As mentioned,
the bottles discharge a pressurized suppressant that propagates along the domain
[22]. We may be interested on finding the behaviour of the propagation front when
[t —to] << 1, let say |t — to| = 0,1. For this purpose, we consider the expression
(3.59) being ty = 3 seconds.

0 < A < tomax{ug(2)} + |z|[log to| "2 = |z|[log 3|2 = 0,954|]|. (3.143)
x€

Then, the expression (3.59) reads:

2] < 1,820|z|2| log(t — to)| 2, (3.144)

such that 1 )
< — < 1,820]log(0,1)|2. (3.145)

|Z|maz |z

The previous inequality is used to determine the support propagating envelope. For
this purpose, we consider the equality:

|2 maz = 0, 159m. (3.146)

This value permits to consider the initial fire agent discharge spatial range. Initially
(for a time of |t — to| = 0,1), the fire agent is limited to an scope of 0,159m.
For comparison purposes, note that Figure 6 provides a value of 4,012m for the
maximum engine nacelle path.

Now, the objective is to determine the propagating front at discharge with [t —
to| >> 1. For this purpose, we make use of (3.60). Previously note that:

l—-p>m-—gq, (3.147)
and according to (3.65) together with the particular values for m and p obtained:
©w=0,832; §=0,34. (3.148)

Note that A is get upon the expression (3.143) assuming |z| = 4,012m to account
for the complete engine nacelle path (Figure 6):

0 < A<0,954|x| = 0,954 - 4,012 = 3,8274. (3.149)

It suffices to consider A = 3,827. Then (3.60) reads:
|z| < 7,407 ¢1820, (3.150)
Accordingly, the fire suppressor required time to cover the nacelle ( |z| = 4,012m

in Figure 6) is:
t=0,714s. (3.151)
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Up to now, we have determined two different times with the corresponding spatial
term along the support:

t=0,1s; |z] = 0,159m,
(3.152)
t=0,714s; |z| =4,012m.

Initially, the propagating front moves slowly. Nonetheless, the positivity in the
solution induced by the discharge makes the propagating front to accelerate and
to complete the whole domain in a relative short time. Based on (3.152), we can
assess a global value for the advection:

4,012
70,714

=5,619m/s. (3.153)

In complex installations, such as the engine nacelles, there might be dead zones
where the fire suppressor propagates by diffusion only (not by advection). A char-
acterization on the behaviour of solutions is provided by Theorems 3.5 and 3.6.
First of all, note that ¢ > m — 1 so that the expression (3.78) holds. The values of
a and § are obtained according to (3.53):

o+1
2(p—q)+ (@ +1) (1))

Upon substitution of each of the parameters obtained:

a= = 0,173, f=q—p=3,220. (3.154)

m—1

o(m—1) (—a + Bd)2>—D
2 —0,8, Coupp = ———————— =0,1845. 3.155
2(1-p) o ((m—l)ﬁ)l/2 (3:155)
2m
Then (3.78):
& = 0,1845[x |8, (3.156)

Remind the expression (3.50) for £&. Then, making the |z| explicit and considering
that |x|q, represents a characteristic dead zone length, we have:

|2]4> = 0,00021 ¢ 162, (3.157)

In the hypothesis of |z|s, = 0,3m, the propagating time required by the support to
cover such dead zone is of ¢ = 0, 6s. Note that we consider the effect of the diffusion
only, when propagating along the support which implies to have positivity (u > 0)
whenever

lz| < 0,00021¢ 162, (3.158)

The required times for the fire suppressor to reach the whole nacelle are given
in expressions (3.152). Note that the minimum required suppressor concentration
to extinguish a fire is 6% in volume. Then, as per expression (3.141) with « > 0, 06:

u Wlélf)

This value fits closely the data provided in Table 1 where the sensors measure
more than 6% given a time higher than that assessed in (3.159). Furthermore,
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2349, 41 8221,4

Figure 6. Nacelle shape geometry

returning to figure 4, it is possible to check that at ¢t = 2,24s, all sensors (except
sensor 8 located in a dead zone) are measuring above the level of 6% which permit
to state the validity of the proposed assessment.

Finally, we determine the local supersolution to represent the finite propagation
profile making use of Theorem 3.6. Assume that we are interested on knowing the
solution profile in the mentioned dead zone. Then € = 0,3 m in Theorem 3.6. Once
each of the parameters are assessed, it is possible to conclude on Ty < 0,510 s. The
waiting time Tj represents the maximal time for which the solution support is kept
null. In other words, once the propagating fire suppressant reaches the interface of
a dead zone, we shall wait for a maximum of 0,510s to see the agent populating
such dead zone.

Now, we summarize the assessed times to have a full physical intuition of the
fire suppressant process:

o Once the extinguisher bottle activates, the agent covers a distance of |z| =
0,159m in t = 0, 1s. This assessment permits to estimate the discharge energy.

o The suppressant propagating interface reaches the whole domain (|x| =4, 012m)
in a time of 0, 714s.

o Nonetheless, the propagating interface does not permit to extinguish a fire per
se. For this, we need a minimum volumetric concentration of 6% for which a
time of 2,245 is required.

 Finally, in the engine nacelle dead zones (assumed to be of a spatial mean
value 0, 3m) the non linear diffusion is predominant. The required time for the
diffusion to reach all areas in the dead zone is assessed to be 0, 6s. Nontheless
and previous to enter the zone, the finite propagation feature induces a waiting
time of maximum 0,510s to initiate the propagation. As a consequence, the
required time for the diffusion to cover the whole dead zone is 0,6 + 0,510 =
1,11s. Note that this time assessment is particularly relevant for the sensor
8 (refer to Figure 4) that is hosted in a zone with low advection. Note that
if we consider the time required for the diffusion to cover the dead zone and
extra-time shall be added to the time required to reach the 6% leading to a
time of 3,35s. Considering this values into Figure 4 since the beginning of
discharge, it is possible to check that the sensor 8 measures above 6%.
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4. Conclusions

The fire suppressant model, based on a non-linear diffusion, has been discussed
with a mathematical approach to support a solid analytical approximation. A
testing campaign on an aircraft has determined finite values for p, ¢, m and o for
which a global solution has been shown to exist. The assessments provided have
permitted to answer global questions to understand the involved physics as a basis
for engineering tasks. Mainly, the questions have consisted on assessing the required
time to ensure the suppressant reaches the whole domain (including the dead zones)
and to a sufficient level to extinguish a fire.
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