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Abstract: Currently, the development of efficient and environmentally friendly flame-retardant
thermoplastic polyurethane (TPU) composite materials has caused extensive research. Ammonium
polyphosphate (APP) is used as a general intumescent flame retardant to improve the flame retardancy
of TPU. In this paper, we developed a functionalized APP flame retardant (APP-Cu@PDA). Adding
only 5 wt% of APP-Cu@PDA into TPU can significantly improve the flame-retardant’s performance
of the composite material, reflected by a high LOI value of 28% with a UL-94 test of V-0 rating.
Compared with pure TPU, the peak heat release rate, total heat release, peak smoke release rate, and
total smoke release were reduced by 82%, 25%, 50%, and 29%, respectively. The improvements on
the flame-retardant properties of the TPU/5%APP-Cu@PDA composites were due to the following
explanations: Cu2+-chelated PDA has a certain catalytic effect on the carbonization process, which
can promote the formation of complete carbon layers and hinder the transfer of heat and oxygen.
In addition, after adding 5% APP-Cu@PDA, the tensile strength and elongation at the break of
TPU composites did not decrease significantly. In summary, we developed a new flame-retardant
APP-Cu@PDA, which has better flame-retardant properties than many reported TPU composites,
and its preparation process is simple and environmentally friendly. This process can be applied to
the industrial production of flame retardants in the future.

Keywords: thermoplastic polyurethane (TPU); flame-retardant; ammonium polyphosphate (APP);
polydopamine (PDA)

1. Introduction

As the most versatile engineering thermoplastic, thermoplastic polyurethane (TPU)
has excellent tensile strength, good shock absorption performance, high wear resistance,
oil resistance, water resistance, and other excellent physical and chemical properties [1].
Because of its outstanding performance, TPU is widely used in the fields of medicine and
health, cables and wires, electronics and aerospace, etc. [2]. However, TPU is flammable,
which severely limits its application due to fire-resistance requirements. Therefore, research
on improving flame retardancy and reducing the release of toxic gases and smoke of TPU
has attracted a lot of attention [3–5]. In recent decades, many flame-retardant materials have
been extensively studied. These studies mainly include halogenated flame retardants, metal
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hydroxides, and compounds containing phosphorus, nitrogen, and silicon. Among them,
halogenated flame retardants have been used less due to environmental safety issues, and
metal hydroxides can reach effective flame retardance only with large additions. Compared
with the above two flame retardants, phosphorus, nitrogen, and silicon compounds have
been widely studied for their environmental friendliness and low addition. As a halogen-
free flame retardant, intumescent flame retardants (IFRs) have the advantages of low smoke
and low toxicity and have become the most widely used flame retardant [6–8]. There are
three main substances in the common IFR system: acid source (the dehydration catalyst for
char formation), carbon source (the carbonization agent), and foaming agent (the blowing
agent). Ammonium polyphosphate (APP) is usually used as an acid source and a gas
source to form protective carbon layers [9,10]. Although APP can provide satisfactory
flame-retardant effects on many materials, as an additive flame retardant, it is easy to have
poor compatibility with the materials matrix [11]. According to previous reports, adding
less than 10 wt% APP helped TPU obtain a V-0 rate in a UL-94 test. Unfortunately, it lost
more than 50% of its elasticity at the same time [12]. Therefore, it is a very challenging task
to develop an efficient method to improve the flame-retardant efficiency of APP.

It is reported that transition metal compounds can promote carbon formation in poly-
mers during combustion [13]. Adding a small amount of transition metal compound and
combining with other flame retardants can effectively improve flame-retardant efficiency.
Chen et al. [14] combined nickel citrate with APP to improve the flame-retardant properties
of TPU, which significantly improved the graphitization degree of char residue of TPU.
In addition, it has been found that copper ions (Cu2+) have a certain effect of catalyzing
the formation of carbon, which can promotes flame-retardant efficiency. For example,
Jiang et al. [15] used melamine formaldehyde resin to coat formaldehyde polyvinyl alcohol
fiber and used Cu2+ to synergize flame retardancy. The addition of Cu2+ can effectively
improve residual carbon and significantly improve the flame-retardant properties of the
fiber. Therefore, we considered that Cu2+ can be used as a synergistic agent to improve the
flame-retardant efficiency of APP.

Dopamine is a biological neurotransmitter, which can form polydopamine (PDA) by
self-polymerization in alkaline aqueous solutions [16]. PDA is widely used for the surface
modification of different materials because of its strong adhesion to various surfaces. In
addition, PDA can be used as a char-forming agent to modify APP [17]. More importantly,
the surface of PDA has a large number of functional groups such as amino and hydroxyl
groups, which can provide abundant metal-chelating sites [18]. Cu2+-chelated PDA has
a strong catalytic carbonization ability [5,19]. More dense carbon layers can be obtained to
inhibit the transfer of heat and oxygen to the polymer, thereby effectively improving the
flame-retardant properties of the polymer [20].

In order to endow TPU with good flame-retardant properties, we prepared APP-
Cu@PDA by using two-step methods and then applied it to TPU to study the effect on
the flame-retardant properties of TPU/APP-Cu@PDA composites. It was expected that
APP-Cu@PDA would improve the flame retardancy of TPU. In addition, the catalytic
carbonization ability of Cu2+-chelated PDA in TPU composites will be investigated.

2. Experimental Section
2.1. Materials

TPU and APP were obtained from Shandong Huada New Chemical Materials Co., Ltd.
Dopamine hydrochlonride (DOPA, ≥98.0%) was supplied by Shanghai Macklin Biochem-
ical Co., Ltd. Tris (hydroxymethyl) amino-methane (Tris) and Cu2+ chloride dihydrate
(CuCl2·2H2O, ≥99.0%) were purchased from Tianjin Damao Chemical Reagent Factory.

2.2. Synthesis of APP-Cu

Generally, a certain proportion of ethanol and water (800:50 in volume) was transferred
into a three-neck flask. APP measuring 10 and 0.845 g CuCl2·2H2O (5 mmol) were added
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into the flask, respectively, and stirred for 4 h. Subsequently, the solution was centrifuged
again and rinsed with ethanol at least 3 times. It was then dried in a vacuum oven at 60 ◦C.

2.3. Synthesis of APP-Cu@PDA

The typical synthesis route of APP-Cu@PDA is provided in Scheme 1. First, APP-Cu
(10 g) was added to 1000 mL of ethanol and sonicated for 30 min, and the above mixture
was transferred into a three-necked flask. Tris 1.21 g measuring (10 mmol) and 1 g of
dopamine (5 mmol) were dissolved in the mixture and stirred for 24 h. The reaction
mixture was washed three times with ethanol, and the excess initial reactant was removed
by centrifugation. Finally, the mixture was dried overnight in a vacuum oven at 60 ◦C to
obtain APP-Cu@PDA particles.
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Scheme 1. Scheme diagram of the preparation of APPCu@PDA.

2.4. Preparation of Flame-Retardant TPU Composites

The TPU were dried in a vacuum oven at 60 ◦C for 8 h. Then, they were mixed with
different weight ratios of APP, APP-Cu, and APP-Cu@PDA, respectively, in an internal mixer,
and the processing temperature was approximately 150 ◦C (Table 1). After mixing, the samples
to be tested were compression-molded by using a hot-plate press at around 200 ◦C.

Table 1. The formulations of TPU composites.

Sample Code TPU/g APP/g APP-Cu/g APP-Cu@PDA/g

Pure TPU 100 / / /
TPU/3%APP 97 3 / /
TPU/4%APP 96 4 / /
TPU/5%APP 95 5 / /

TPU/3%APP-Cu 97 / 3 /
TPU/4%APP-Cu 96 / 4 /
TPU/5%APP-Cu 95 / 5 /

TPU/3%APP-Cu@PDA 97 / / 3
TPU/4%APP-Cu@PDA 96 / / 4
TPU/5%APP-Cu@PDA 95 / / 5

2.5. Measurements

Fourier transform infrared spectroscopy (FTIR) was used for recordings on a Nicolet
MNGNA-IR560 (Artisan Technology Group, Austin, TX, USA) with a transition mode
and a wave-number range between 400 cm−1 and 4000 cm−1. X-ray diffraction pat-
terns (XRDs) were recorded on a D8 Advance X-ray diffractometer (Bruker, Karlsruhe,
Germany) with Cu Kα radiation (λ = 0.154 nm). Thermogravimetric analysis (TGA)
was recorded on an STA 449C thermal analyzer (Selb, Germany) with a heating rate
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of 10 ◦C/min in N2 atmosphere. X-ray photoelectron spectroscopy (XPS) was conducted
by by using a VG ESCALAB MK II spectrometer with Al Kα X-ray radiation at 10 kV
and 10 mA. A scan by scanning electron microscope (SEM) was carried out on SEM JEOL
JSM-6360LV (Japan) equipped with mapping images. Limiting oxygen index (LOI) mea-
surements were carried out according to ASTM D2863–13 on samples with dimensions
of 127.0 mm × 6.5 mm × 3.0 mm. A UL-94 vertical burning test was performed on sam-
ples with dimensions of 127.0 mm × 12.7 mm × 3.0 mm according to ASTMD380. A cone
calorimeter test (CCT) was used to characterize the combustion behavior of samples with
dimensions of 100.0 mm × 100.0 mm × 4.0 mm under a heat flux of 50 kW/m2 according
to ISO 5660-1. Raman spectra were obtained by using a multichannel confocal spectrom-
eter (HORIBA Scientific LabRAM HR Evolution, Kyoto, Japan) with a laser wavelength
of 535 nm.

3. Results and Discussion
3.1. Structure of APP-Cu@PDA

As shown in Figure 1a, the FTIR spectra of APP, APP-Cu, and APP-Cu@PDA showed
adsorption peaks at 3208 cm−1 and 1250 cm−1, which is assigned to N-H and PO bonds.
After being modified by PDA, several new absorption peaks appeared. The adsorption
vibration peak of 1605 cm−1 was attributed to its indole group [21]. The appearance of the
new peak confirmed that PDA was successfully coated on the surface of APP-Cu. TGA
was used to further characterize the structure of APP-Cu@PDA. Figure 1b showed the XRD
patterns of APP (PDF#45-0002), APP-Cu, and APP-Cu@PDA. It can be clearly observed
that the introduction of Cu and PDA into APP had almost no effect on the crystal structure
of APP. TGA was used to evaluate the thermal degradation behavior of APP, APP-Cu, and
APP-Cu@PDA. It can be observed from Figure 1c that the thermal stability of APP-Cu@PDA
was lower than that of APP, which may be due to the large number of unstable organic
structures on PDA [22].
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Figure 1. (a) FTIR spectra, (b) XRD patterns, and (c) TGA curves of APP, APP-Cu, and APP-Cu@PDA.

XPS was used to analyze the element types and chemical states of APP-Cu@PDA.
Figure 2a showed the measured spectrum of APP-Cu@PDA, revealing the presence of
Cu, N, O, and C. The Cu 2p spectrum (Figure 2b) can be divided into two peaks where
the binding energies of 954.7 and 953 eV correspond to Cu 2p1/2 and 934.1 and 932 eV
correspond to Cu 2p3/2 [23]. The two main intensities (Figure 2c) of 400.7 and 398.8 eV
deconvoluted from the N 1s peak were attributed to N-H and C-N, respectively, [24]
proving that there are abundant amino groups on the surface of APP-Cu@PDA, which
may promote the interaction between the filler and the TPU matrix. [20] In addition, the
deconvolution of the O 1s peak in Figure 2d showed P-O-P (533.1 eV), C-OH (532.6 eV), and
O-Cu (531.6 eV) signals, which proved the presence of PDA and indicated the coordination
bonds between Cu2+ and catechol groups [25].
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In order to further confirm PDA and Cu2+-modified APP, the obtained APP and
APP-Cu@PDA materials were characterized by SEM to analyze their morphology and
elemental composition. Figure 3a showed that the surface structure of APP was relatively
smooth. After modification by Cu2+ and PDA, the surface became rough. The combination
of SEM and mapping images of the selected area proved the existence of Cu2+, N, and O
elements, indicating that Cu2+ and PDA were successfully coated on the surface of APP.
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3.2. Thermal Degradation Behavior of TPU and TPU Composites

Under a nitrogen atmosphere, TGA and DTG were used to study the thermal stability
of TPU and TPU composites (Figure 4), and the corresponding data were shown in Table 2.
It can be observed from Table 2 that the initial degradation temperature 5 % weight loss
of TPU/APP-Cu@PDA was lower than that of pure TPU. This may be due to the catalytic
decomposition of APP-Cu@PDA and the introduction of a large number of organic functional
groups on PDA [26]. It can be clearly observed from Figure 4 that the thermal stability
of the composites with 5% APP had been significantly improved after 400 ◦C. The main
reason was that the introduction of APP resulted in the formation of carbon layers at high
temperatures, which inhibited the transfer of heat and oxygen to the substrate [27,28]. It
was worth noting that char yields were 27.1% and 28.6% at 800 ◦C with the introduction of
APP-Cu and APP-Cu@PDA, respectively, as compared with the pure TPU. It can be observed
from the above results that the addition of PDA can improve the thermal stability of TPU
composites. The main reason was that Cu2+-chelated PDA had a catalytic carbonization effect
on the substrate, which improved the carbonization rate of TPU composites.
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Table 2. TGA data for TPU and TPU composites.

Sample T5wt% (◦C) Tmax (◦C) C800 (%)

Pure TPU 285 351 9.4
TPU/5% APP 276 369 24.8

TPU/5%APP-Cu 277 379 27.1
TPU/5%APP-Cu@PDA 279 373 28.6

Note: T5wt% means temperature at 5 wt% mass weight, Tmax means temperature at the maximum degradation
rate, and C800 means char yield at 800 ◦C.

3.3. Combustion Behavior of TPU and TPU Composites

It can be observed from Figure 5 that the LOI of pure TPU was 19%. With the increase
in flame-retardant loading, the LOI value gradually increases. In addition, the LOI value
of adding different flame retardants (APP, APP-Cu, and APP-Cu@PDA) under the same
addition amount was improved, and the LOI value of 5% APP-Cu@PDA can reach 28%
higher than that of 5% APP (26.6%) and 5% APP-Cu (27.2%). The introduction of 5%
APP-Cu@PDA increased the LOI value of composites by 9% compared with pure TPU.
The higher LOI value of TPU/5%APP-Cu@PDA may be due to the higher catalytic ability
of Cu2+-chelated PDA [20]. Therefore, the introduction of APP-Cu@PDA can generate
relatively dense carbon layers to protect the polymer matrix, thereby achieving a better
flame-retardant effect. In the UL-94 test, pure TPU burns violently and drips when ig-
nited, failing to pass the V-0 rating. When the amount of flame retardant reaches 5%, the
UL-94 rating is V-0. Moreover, TPU/5%APP-Cu@PDA stopped burning immediately after
removing the flame, and the self-extinguishing ability was significantly improved.
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In order to further study flame retardancy, CCT was carried out on pure TPU and
TPU composites. The curves of heat release rate (HRR), total heat release (THR), smoke
produce rate (SPR), total smoke produce (TSP), CO production, and CO2 production are
shown in Figure 6 and Table 3. As shown in Figure 6a, pure TPU showed a sharp peak heat
release rate (pHRR) at 1127 kW/m2 due to rapid combustion. For TPU/5%APP composites,
pHRR had been reduced to 212 W/m2, mainly because APP can promote the dehydration
and carbonization of polymers into carbon layers under thermal decomposition. After
adding 5% APP-Cu@PDA, the pHRR of the composites further dropped to 196.3 kW/m2,
which may be due to an increase in the formation of an expanded carbon layer [29]. The
expanded carbon layer can act as a physical barrier to inhibit the transfer of heat and
oxygen [22]. In addition, the THR of TPU/5%APP-Cu@PDA composite is lower than that
of both TPU/5%APP and TPU/5%APP-Cu composites. The reason may be that the carbon
layer generated was denser after adding PDA [29].

Additionally, the smoke produced during combustion has always been considered
as an important factor that directly results in suffocation. Therefore, for flame-retardant
polymers, smoke suppression is very important. Figure 6c showed the SPR curve of pure
TPU and TPU composites. It can be observed that the peak of SPR (pSPR) of pure TPU was
0.11 m2/s. After adding 5% APP, APP-Cu6, and APP-Cu@PDA, the pSPR values of the
composites were significantly reduced to 0.05 m2/s. This was mainly due to the formation
of protective carbon layers on the surface of the polymer matrix, which was difficult to
eliminate via the emitted gas. Figure 6d showed the TSP curve of pure TPU and TPU
composites. It can be observed that the introduction of Cu2+ and Cu2+-chelated PDA can
further reduce the TSP value of the TPU composites compared with pure TPU, respectively.
However, the slightly higher TSP of TPU/5%APP-Cu@PDA composites is probably due
to there being more organic functional groups on PDA, resulting in more gas released
during the combustion process. In addition, compared with pure TPU, the CO and CO2
productions of TPU/5%APP-Cu@PDA composites were significantly reduced (Figure 6e,f).
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Table 3. CCT data for TPU and TPU composites.

Sample TTI
(s)

pHRR
(kW/m2)

THR
(MJ/m2)

pSPR
(m2/s)

TSP
(m2)

FPI
(s m2/kW)

Residue
(%)

Pure TPU 27 1127 101.1 0.11 14.2 0.024 8.5
TPU/5%APP 21 212 77.2 0.05 12.0 0.099 18.3

TPU/5%APP-Cu 22 227 84.0 0.05 9.5 0.097 22.8
TPU/5%APP-Cu@PDA 25 196 75.7 0.05 10.1 0.127 23.0

3.4. Char Layer Analysis

In order to further analyze the charring ability of APP-Cu@PDA after combustion,
digital images of the outer surface of the carbon residue tested by a cone calorimeter were
taken. As shown in Figure 7a, after adding 5% of APP, carbon residues were measured
to be lower and the carbon layers on the outer surface were relatively fragile; thus, there
were many large and dense holes on the top. After adding 5% APP-Cu (Figure 7b) and 5%
of APP-Cu@PDA (Figure 7c), the amount of residual carbon increased significantly, and
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the holes in the outer surface carbon layer became smaller, which can inhibit the transfer
of heat and oxygen. In addition, SEM images were used to observe the changes in the
microstructure of carbon residues of different TPU composites. It can also be observed in
Figure 7d–f that the carbon layers of the TPU composites with 5% of APP-Cu@PDA were
mostly intact and compact, which further illustrates the catalytic carbonization ability of
Cu2+-chelated PDA on TPU materials.
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In addition, the resulting carbon residue after combustion was analyzed by Raman
spectra (Figure 8). The Raman spectrum showed two representative peaks at 1348 and
1590 cm−1, which belong to peak D and peak G, respectively. The ratio of D peak
intensity to G peak intensity was used to judge the degree of graphitization of the carbon
residue. The lower the value of ID/IG, the higher the degree of graphitization. The
ID/IG values of TPU/5%APP, TPU/5%APP-Cu, and TPU/5%APP-Cu@PDA were 3.3,
2.9, and 2.7, respectively. It was proved that TPU/5%APP-Cu@PDA had the highest
degree of graphitization [19].

Materials 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 7. Digital images of chars from TPU/5%APP in top (a-1) and front (a-2) views, TPU/5%APP-
Cu in top (b-1) and front (b-2) views and TPU/5%APP-Cu@PDA in top (c-1) and front (c-2) views, 
and SEM images of exterior chars from (d) TPU/5%APP, (e) TPU/5%APP-Cu, and (f) TPU/5%APP-
Cu@PDA. 

In addition, the resulting carbon residue after combustion was analyzed by Raman 
spectra (Figure 8). The Raman spectrum showed two representative peaks at 1348 and 
1590 cm−1, which belong to peak D and peak G, respectively. The ratio of D peak intensity 
to G peak intensity was used to judge the degree of graphitization of the carbon residue. 
The lower the value of ID/IG, the higher the degree of graphitization. The ID/IG values of 
TPU/5%APP, TPU/5%APP-Cu, and TPU/5%APP-Cu@PDA were 3.3, 2.9, and 2.7, respec-
tively. It was proved that TPU/5%APP-Cu@PDA had the highest degree of graphitization 
[19]. 

 
Figure 8. Raman spectra of residues for (a) TPU/5%APP, (b) TPU/5%APP-Cu, and (c) 
TPU/5%APP-Cu@PDA. 

3.5. Mechanical Properties 

Figure 8. Raman spectra of residues for (a) TPU/5%APP, (b) TPU/5%APP-Cu, and (c) TPU/5%APP-Cu@PDA.



Materials 2022, 15, 1990 10 of 13

3.5. Mechanical Properties

The mechanical properties of pure TPU and TPU composites are shown in Table 4.
The results showed that the tensile strength (Ts) of pure TPU was 28.9 ± 2.3 MPa, and
elongation at break (Eb) was 1310 ± 42%. The introduction of APP significantly reduced
the Ts and Eb of TPU composites, which may be due to the stress concentration caused by
the accumulation of APP in the TPU matrix, making the composites prone to cracks [30].
Furthermore, compared with TPU/5%APP, the Ts and Eb of TPU/5%APP-Cu increased by
25% and 12%, and the Ts and Eb of TPU/5%APP-Cu@PDA increased by 43% and 37%. This
may be due to the rigidity of the APP-Cu component and the strong interaction between
the PDA and the TPU matrix in the APP-Cu@PDA component, which further improved
compatibility with the matrix [20].

Table 4. Tensile tests for pure TPU and TPU composites.

Sample Ts (MPa) Eb (%)

Pure TPU 28.9 ± 2.3 1310 ± 42
TPU/5%APP 20.0 ± 0.6 991 ± 24

TPU/5%APP-Cu 25.3 ± 0.3 1127 ± 71
TPU/5%APP-Cu@PDA 28.6 ± 0.4 1361 ± 5

3.6. Proposed Fire-Retardant Mechanism

Based on the above results and analysis, we proposed the flame-retardant mechanism
of APP-Cu@PDA in TPU composites shown in Scheme 2. Cu2+-chelated PDA had the
ability to catalyze the carbonization of TPU in the condensed phase, making carbon layers
denser. Moreover, dense carbon layers can act as a barrier, reducing the transfer of heat,
fuel, and oxygen between the flame zone and the polymer matrix. The higher the strength
of the carbon layer, the better the flame retardancy.
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Scheme 2. Schematic diagram of the flame-retardant mechanism of TPU/APP-Cu@PDA composite.

In addition, compared with other reported flame-retardant TPU composites (Table 5),
the bio-based TPU/APP-Cu@PDA composites prepared in this paper use a simple and
green synthetic route and have excellent flame-retardant effects. Therefore, the material
is expected to be used as an environmentally friendly and efficient flame retardant in the
industrial production of fireproof materials in the future.
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Table 5. Flame-retardant properties of TPU composites in the literature.

Year Sample Bio-Based
Supporter FR LOI Increase

(%)
pHRR Decrease

(%) Ref.

2018 TPU/para-aramid fiber-Fe NO Para-aramid fiber-Fe 11.8 57.6 [31]
2019 TPU/CS YES CS - 65.9 [32]

2019

TPU/oyster shell
powder/isopropyl

tris(dioctylphosphoryloxy)
titanate

NO
isopropyl

tris(dioctylphosphoryloxy)
titanate

6.5 67.5 [33]

2021 TPU/SiAPP/MPCSN NO SiAPP/MPCSN 29 68.7 [34]
2021 TPU/Zn&Co-ZIF-L NO Zn&Co-ZIF-L 9.7 43.8 [35]
2022 TPU/8.0AHP/1.0ZIF-8@SEP NO ZIF-8@SEP 20.3 78.9 [36]
2022 TPU/APP-Cu@PDA YES APP-Cu@PDA 32.1 82.0 This work

4. Conclusions

In order to provide TPU with higher flame-retardant properties, bioinspired Cu2+-
chelated PDA was used to coat the surface of APP to prepare TPU composites. The successful
preparation of TPU/APP-Cu@PDA was proved by FTIR, XRD, XPS, and SEM analysis. In
terms of flame-retardant testing, the LOI value of pure TPU was 19%, there were no rat-
ings in UL-94, and pHRR was 1127.3 kW/m2. Compared with pure TPU, the LOI value of
TPU/5%APP-Cu@PDA was 28%, and the V-0 rating and pHRR were reduced to 196 kW/m2.
The introduction of Cu2+ and PDA can further improve the flame-retardant efficiency of APP
catalyzing carbonization. The SEM and Raman studies on residual carbon showed that Cu2+-
chelated PDA improves the quality of carbon and has a higher degree of graphitization. These
results indicated that APP-Cu@PDA can form dense carbon layers, which act as a physical
barrier and inhibit the transfer of heat and oxygen. It was worth noting that APP-Cu@PDA
is a non-toxic, smoke-suppressing, and highly effective flame retardant, and Cu2+-chelated
PDA can be used to modify the surface of various other fillers, providing a method for the
preparation of high-performance flame-retardant polymer composites.
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