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a b s t r a c t

This paper investigates long memory, persistence and co-movements in the most representative stock 
markets from all over the world. We look at seven stock market indices from Europe, Asia and North 
America, first individually, by looking at the order of integration of the series from a fractional point of view 
and comparing different sampling periods (daily, weekly and monthly) for the time period 2009-2020. 
Then, co-movements across the series are examined by looking at the differences between them. The results 
indicate that all the individual series are highly persistent, with orders of integration close to 1 in most 
cases; evidence of a small degree of mean reversion is found in the two American indices (S&P500 and Dow 
Jones) and, generally, lower orders of integration are found at lower sampling frequencies. Focusing on the 
co-movements across the series, we observe a reduction in the degree of persistence in the one-by-one 
differential comparison of the series. Even though the differencing parameter is small compared with what 
we should have obtained under standard cointegration, this factor still shows long-memory as it ranges in 
the interval (0.5, 1) in the majority of cases; and appears to be greater when comparing markets from the 
same geographic region, showing evidence that the convergence process between the stocks is slower 
between markets of the same continents.
© 2022 The Author(s). Published by Elsevier Inc. on behalf of Board of Trustees of the University of Illinois. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The WWWF (World Wide Web Foundation) was established in 
2009 by Sir Tim Berners-Lee and Rosemary Leith to advance the 
open web as a public good and a basic right. This open network, 
widely known today as the Internet, was first proposed in 1989, and 
heralded the start of the Digital era. One clear consequence of the 
widespread development of this network is globalization as in
formation is now exchanged all over the world, increasing trade 
between the main economic regions across the globe. Evidence from 
time-series and cross-section regressions shows the significant ef
fect of the Internet on trade in recent years. According to Freund and 
Weinhold (2004), this evidence is consistent with a model in which 

the Internet reduces market-specific fixed costs of trade. Financial 
markets are not too distant from this process as international fi
nancial markets are becoming increasingly interconnected, with 
equities displaying a high degree of co-movement across countries 
(Caporale et al., 2016).

The global financial crisis of 2007 and its far-reaching effects 
brought about greater coordination between all countries in an ef
fort to resolve the problems which had arisen, and in doing so the 
G20 group was created to lead this process. Financial policies were 
coordinated in all economic regions creating new national and in
ternational institutions and a “new global framework” was proposed 
in order to implement policy recommendations contained in the 
G20. The global financial crisis provided a unique opportunity to go 
beyond economic data and attempt to capture cross border financial 
data and other information that could assist international and na
tional institutions to measure and manage financial risk more ef
fectively (Moshirian, 2011). Frank and Hesse (2009) argued that 
central bank interventions had a statistically significant impact on 
easing stress in unsecured interbank markets during the first phase 
of the subprime crisis that began in July 2007.

Traditionally, financial market volatility was said to have long 
memory and some mean reverting properties. Poterba and Summers 
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(1988) suggested that shocks to stock market volatility do not persist for 
long periods, facilitating its predictability. Other studies focusing on the 
2007 financial crisis have also questioned these properties, making a 
distinction between different periods in which these mean reversion 
properties do not hold. Thus, for example, Gil-Alana et al. (2014) in
vestigated bull and bear periods, finding no evidence of systematic 
patterns in terms of persistence, though in some cases higher degrees of 
dependence were found during bull periods. In this line, Caporale et al. 
(2016) analyzed the linkages between stock markets with cointegration 
techniques to determine if there are diversification benefits from in
vesting in different stock markets. Defining d as the degree of integra
tion, processes with d = 0 or I(0) are associated with covariance 
stationary (short memory) processes, while if d > 0, time series are said 
to be ‘long memory’, because of the strong association between ob
servations far apart in time. In particular, if d belongs to the interval (0, 
0.5), time series are still covariance stationary, while d ≥ 0.5 implies 
nonstationarity. Finally, if d < 1, the series are mean-reverting, implying 
that the effect of the shocks disappears in the long run, in contrast to 
what happens if d ≥ 1, when the effects of shocks persist forever.

Globalization and interconnection between markets are leading 
to a different challenge, seeking market co-movements and de
termining in which direction are they moving. Several works have 
been developed in the last decade for specific regions, with strong 
evidence of co-movements across the markets. However, for some 
periods and regions it has been found that these co-movements are 
not strong or even not bi-directionally generated as has been shown 
in Gagnon et al. (2016), Caporale et al. (2016), Todea (2016) Yavas and 
Dedi (2016), Cardona et al. (2017), Aktan (2018) and others.

The objective of this paper is to evaluate the market persistence 
properties for the US, European and Asian regions by studying the 
performance of stock market prices across the indices, checking if the 
effect of different sample collections (monthly, weekly and daily) 
matters within the selected time-frame. Thus, we will first study the 
degree of persistence of the individual markets, as this is of interest if 
we want to know if shocks in the series have transitory or permanent 
effects. In addition, we investigate if the degree of persistence in the 
series changes with the data frequency and fractional cointegration in 
order to investigate long run equilibrium relationships between the 
variables of interest. As in most previous studies there is little evi
dence of mean reversion in the individual indices (DePenya & Gil- 
Alana, 2004; Tabak, 2007; Narayan, 2008; Hasanov, 2009; Gozbasi 
et al., 2014; Tiwari & Kyophilavon, 2014; etc.). We will try to verify this 
property by studying mean reversion in the one-to-one differential 
comparisons, evaluating the possible co-movements between all the 
indices. Therefore, the contributions of this work are as follows: we 
first investigate persistence individually in the stock market series of 
seven European, Asian and American markets by using fractional in
tegration. The study is conducted at different data frequencies to see if 
persistence is affected by it. Finally, long run equilibrium relationships 
between the indices are examined by using fractionally cointegrated 
methods in a vis-à-vis relationship among them. The results in this 
work indicate little evidence of mean reversion in the price indices 
individually, along with a reduction in the order of integration at 
lower frequencies. On the other hand, we find some degree of mean 
reversion in some cases in the differences between the indices, sup
porting the idea of long run co-movements between them.

The rest of the paper is structured as follows: Section 2 includes a 
short literature review on modeling stock market prices. Section 3 is 
devoted to the methodology. Section 4 describes the dataset, while 
Section 5 displays the main empirical results. Section 6 concludes 
the manuscript.

2. Literature review

Initial studies about the persistence of market fluctuations and 
long memory in stock prices can be found in the seminal paper of 

Mandelbrot and van Ness (1968), introducing the concept of Frac
tional Brownian Motion and Fractional Noise, and showing evidence 
of a long-term dependence structure of 200 daily samples in the 
SP500 index. Greene and Fielitz (1977) tested for long-term depen
dence in US stock returns, analyzing stock indices and firms' returns 
series to evaluate aggregation effects and demonstrating that many 
series are characterized by long-term dependence. Epps (1979)
looked for correlations between price changes in common stocks of 
companies. They were found to decrease with the length of the 
measurement interval. According to this author this was due to the 
nonstationarity of security price changes, and also to the correlations 
between price changes in the same stock, and in different stocks in 
successive periods. Booth et al. (1982) studied persistent depen
dence in gold prices, observing a high degree of dependence in the 
series. Helms et al. (1984) studied theSP500 futures and defined the 
label of “memory” as the presence of dependency. In terms of stock 
market volatility, Poterba and Summers (1986) found that shocks to 
volatility tend to decay rapidly and therefore volatility shocks can 
have only a small impact on stock market prices. After this result, 
Fama and French (1988) and Poterba and Summers (1988) focused 
on the US market predictability, finding mean reversion properties. 
Pindyck and Rotemberg (1993) studied the co-movements of stock 
prices in companies with unrelated lines of business, finding evi
dence that these prices should move together only in response to 
changes in current or expected future macroeconomic conditions. 
Andersen and Bollerslev (1998) looked for more accurate volatility 
forecasts, showing that volatility models produce strikingly accurate 
interdaily forecasts for the latent volatility factor. Andersen et al. 
(2001) noticed that realized volatilities and correlations show strong 
temporal dependence and appear to be well described by long- 
memory processes, with strong evidence that realized volatilities 
and correlations move together in a manner broadly consistent with 
latent factor structure. A very extensive literature review of the 
different techniques followed for testing persistence structure and 
mean reversion can be found in Caporale et al. (2016). Some more 
recent approaches can be found in Jach (2017), that quantified time- 
varying comovements between international stock market returns 
for various countries, by making comparisons with cross-correla
tions with rolling-windows or multi-period returns; and in Zehri 
(2021) that followed a GARCH-Copula CoVaR approach to address 
the risk spillovers from the US to China, Japan, Hong Kong, and South 
Korea stock returns, with evidence of large spillover effects from the 
US to East Asian stock markets, becoming stronger during the 
COVID-19 period.

Regarding recent research on persistence in stock markets, Los 
and Yu (2008) studied the Chinese market using Hurst exponents, 
finding evidence of persistence in all the analyzed series. Cunado 
et al. (2009) analyzed with fractional integration the US stock 
market in the TI bubble period (1994-2002), finding a different de
gree of volatility persistence for bull and bear markets, and sug
gesting that the higher uncertainty during bear markets could be 
related to the higher persistence observed in bear markets. Chandra 
Pati and Rajib (2010) using GARCH models for Indian future markets 
between 2004-2008, also found evidence of clustering and high 
persistence. McMillan and Thupayagale (2011) examined African 
stock markets using GARCH models and found that volatility per
sistence was overestimated if structural breaks were taken into ac
count. Hung-Chun et al. (2012) used daily samples between 2002 
and 2008 for SP500 depositary receipts, demonstrating that different 
GARCH-type models can be used to forecast both volatility and VaR 
(value-at-risk). Bentes (2014) analyzed the G7 group stock market 
indices with daily observations between 1999 and 2009 using FIG
ARCH models, finding evidence of long memory in the conditional 
variance. Yaya and Gil-Alana (2014)studied the Nigerian market with 
GARCH models, also noticing a different level of persistence between 
bull and bear market phases. Chuang (2015), for the Taiwanese 
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market, used Granger-causality networks finding also long memory 
in the realized volatility. Other recent papers finding evidence of 
long memory in the volatility of stock markets include among others 
Assaf (2016), Jin (2017) and Gkillas et al. (2018). Caporale et al. 
(2020a, 2020b) used fractional integration to analyze persistence 
and non-linearities with structural breaks in various European stock 
markets, finding support for some degree of persistence and mean 
reversion across countries and subsamples without any clearly 
identifiable patterns. Adekoya (2021) also investigated the issue of 
long memory in 26 OECD countries using fractional integration and 
obtained evidence of mean reversion and long memory in 18 out of 
the 26 countries investigated. In another recent paper, Caporale et al. 
(2020a, 2020b) examined the Russian stock market and found no- 
persistence, mean-reversion and no-permanent effects of shocks.

On the other hand, the concept of co-movements in international 
stock markets was introduced by Beltratti and Morana (2006) when 
defining common long memory factor models with fractional coin
tegration. They studied the relationship between macroeconomic 
factors and stock market volatility and found evidence of a twofold 
linkage between stock markets and macroeconomic volatility. Other 
estimations of co-movements that used quantile regressions were 
found previously in Baur and Schulze (2005), showing that daily 
stock index returns display “some” contagion (defined as the crisis- 
specific co-exceedance not explained by the covariates for different 
quantiles), and that this is predictable within and across regions. 
Furthermore, contagion depends on a regional (world) market re
turn and its volatility and is stronger for extreme negative returns 
than for extreme positive returns. There is also important research 
on the relationship between financial markets and other indicators, 
such as oil prices (Nath Sahu et al., 2014; Guesmi et al., 2016; 
Hamdam & Hamdam, 2019; Mokni & Youssef, 2019; Hou et al., 2019; 
Salisu & Gupta, 2020; Sarwar et al., 2020; Ehouman, 2020; etc.) and 
macro fundamentals (Conrad & Loch, 2014; Otieno et al., 2019; etc.), 
where results of cointegration indicate the existence of a long-term 
equilibrium relationship.

Dealing specifically on the co-movements across the indices, 
after the seminal contribution of Beltratti and Morana (2006) there 
have been important contributions in recent years. Gil-Alana et al. 
(2014) analyzed the bull-bear cyclical pattern observed in European, 
US and Asian markets with GARCH specifications. They show that 
there is not a systematic pattern in terms of the persistence degree, 
noting however a higher degree of dependence during the bull 
periods. Cardona et al. (2017) tested volatility transmission between 
US stock markets and the six largest Latin American stock markets 
using MGARCH-BEKK. They used daily frequency from 1993 to 2013 
and found strong evidence of volatility transmission from US to the 
Latin American markets but not so in the opposite direction. 
Caporale et al. (2016) analyzed for the time period 1986-2013 the 
SP500 and the EuroStoxx50 indices using fractional cointegration 
methods, suggesting that cointegration does not hold over the full 
sample; however, there was evidence of it over the subsample from 
1996-2009. Gagnon et al. (2016) investigated cointegration and fi
nancial market integration between five US and European equity 
indices using daily time series between 2003-2013; they found an 
increase in persistence and in the speed of adjustment in the 2007- 
2009 global crisis period, while outside of that period, the coin
tegration relationship was more fragmented, especially for higher- 
order moments. Todea (2016) investigated the dynamics of volatility 
persistence/market integration in the case of 20 emerging stock 
markets during the period 1999-2013 with daily observations and 
employing rolling windows, concluding that the emerging markets 
were not fully integrated with the world market. Yavas and Dedi 
(2016) studied the linkages between ETF (equity exchange traded 
funds) and their volatility transmission using MARMA and GARCH 
methodologies with daily samples between 2010 and 2015, finding 
strong evidence of volatility spillovers in four out of the five 

countries under study. Aktan (2018) studied the long-term re
lationship between BRICS and US stock markets by employing co
integration models and Granger causality tests on daily samples 
between 2011-2016, finding evidence of unidirectional causality 
from the US market towards the Russian, South African and Indian 
stock markets, while there is only a bidirectional causal relation 
between US and Brazil. Lyócsa and Horváth (2018) measured co- 
movements between the U.S. and the G7 stock markets using return 
co-exceedances models with daily data from 1999 to 2014, showing 
evidence of transmission from the U.S. to the other developed 
markets during both non-crisis and crisis periods, especially for 
sizable shocks. Finally, Budd (2018) analyzed weekly index returns 
from 2000 to 2014 collected from the S&P500 Index and the four 
largest equity indices in the Asia-Pacific market, using a VECH- 
MGARCH modeling approach. They found that all exchanges are 
well-integrated as the volatility in one market leads the volatility of 
the other markets in the Asian-Pacific region.

3. Methodology

Fractionally integrated methods are used in the empirical section 
of this paper. We choose this method since we are interested in 
describing the degree of persistence in the indices and in the vis-à- 
vis differences in order to know if there are co-movements across 
the indices.

The standard approach to determine the degree of persistence in 
time series data is to look at unit root tests to determine if the series 
is stationary I(0) (with shocks having transitory effects) or nonsta
tionary I(1) (with a unit root and the series having permanent effects 
of shocks). However, all classical unit root methods (e.g., Dickey and 
Fuller (1979); Phillips and Perron (1988); Kwiatkowski et al. (1992); 
Elliot et al. (1996); etc.) have very low power if the alternatives are of 
a fractional form (see, e.g., Diebold & Rudebusch, 1991; Hassler & 
Wolters, 1994; Lee & Schmidt, 1996; etc.). This is the motivation for 
using fractionally integrated methods in this paper.

The fractional integration or I(d) approach consists of taking d- 
differences in a given series to render it stationary I(0) and where d 
can be any real value, thus allowing for fractional degrees of differ
entiation. In other words, we say that xt follows an integration of 
order d process, i.e., xt ∼ I(d) if it can be represented as

= =L x u(1 ) , t 1, 2d
t t (1) 

where L is the lag operator, i.e, Lxt = xt-1, and ut is a short memory or 
I(0) process.1 If d = 0 in (1), xt = ut, and xt is said to be short memory 
as opposed to the long memory case that takes place with d > 0. It is 
said to be long memory because of the large degree of association 
between observations which are far away in time, noting that the 
polynomial in L in (1) can be expressed as:

= + …L dL
d d

L(1 ) 1
( 1)

2
.d 2

Thus, the differencing parameter d must be taken as a measure of 
the degree of persistence in the data, the higher its value is, the 
higher the degree of the dependence in the data is. Moreover, it 
permits us to distinguish between mean reversion and lack of it in a 
more flexible way than the standard methods that only use the va
lues 0 (for stationary series and mean reversion) and 1 (for non
stationarity and lack of it). In the context of real values of d, mean 
reversion occurs as long as d is smaller than 1, and the lower the 

1 A short memory or I(0) process is defined as a process where the infinite sum of 
autocovariances is finite, including thus the white noise case, but also stationary and 
invertible ARMA processes. On the contrary, long memory is defined as a process 
where the infinite sum of autocovariances is infinite, and the I(d) processes with d > 0 
belong within this category.
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value of d is, the faster the process of convergence is to its original 
long-term projection.

Note that the differencing parameter d plays a crucial role in 
determining the nature of the time series under examination. Thus, 
if d = 0, the series is short memory, with shocks disappearing rela
tively fast (exponentially if the series displays autocorrelation of the 
AR type); if 0 < d < 0.5, the series is long memory though still cov
ariance stationary, with shocks lasting longer than in the previous 
case. If 0.5 ≤ d < 1, the series is no longer covariance stationary 
though it is still mean reverting with shocks disappearing in the long 
run; finally, if d ≥ 1, the series is not mean reverting and shocks 
persist forever.

The estimation of d is conducted via the Whittle function in the 
frequency domain using a parametric approach developed in 
Robinson (1994). This is a testing procedure that tests the null hy
pothesis Ho: d = do, for any real value do in (1). Thus, it admits values 
in the nonstationary range (do ≥ 0.5), and the limit distribution is 
standard normal independently of the assumptions made on the I(0) 
error term ut, and even allowing for deterministic terms like an in
tercept and/or a time trend. In addition, it is the most efficient 
method in the Pitman sense against local departures from the null. 
(See Gil-Alana & Robinson, 1997, for the functional form of the ver
sion of the tests of Robinson, 1994 used in this application).

4. Data

We use data on a daily, weekly and monthly basis from seven 
major indices of US, European and Asian markets, over the period 

January 1st 2009 – November 9th 2020, avoiding thus the shock 
created by the 2007-08 financial crisis but covering the post-crisis 
and including the first wave of the COVID crisis. Specifically, we 
considered the S&P500 index (ISIN US78378X1072), the Dow Jones 
Industrial Average index (ISIN US2605661048), the Deutsche Boerse 
DAX index (ISIN DE0008469008), the Financial Times Stock 
Exchange 100 Index (ISIN GB0001383545), the Hang Seng Index 
(ISIN HK0000004322) and the Shanghai Stock Exchange Composite 
Index (ISIN CNM000000019) taken from the Reuters Eikon database, 
and the Nikkei 225 index (ISIN JP9010C00002) taken from the 
Bloomberg database. Figs. 1 and 2 summarize the collected data and 
their relative index performance, observing a certain co-movement 
across the indices.

Due to the existence of different regional labor calendars, a 
process of homogenization has been carried out for the daily sam
pled series for comparing the different data. In particular, as US 
markets were the largest ones in terms of capitalization, the US 
calendar has been followed for this analysis. For the other non-US 
indices, the non-US labor days have been removed and the previous 
closing value has been repeated in the case of foreign non-labor 
days. This is not an issue for monthly and weekly sampled series as 
there are samples for all ending weekly and monthly data over the 
period under analysis.

Table 1 displays the volatility coefficient for all indices across 
frequencies, while Fig. 3 shows the volatility coefficients along with 
CAGR returns. It can be observed that the observed volatility coef
ficient measured as the normalized standard deviation over the 
average return, grows as the sampling frequency grows. This 

Fig. 1. Data series collected. 

L.A. Gil-Alana, J. Infante and M.A. Martín-Valmayor Quarterly Review of Economics and Finance 89 (2023) 347–357

350



volatility coefficient change ranges between 0.50% and 0.90% in all 
the series, therefore it may be more noticeable in the series with 
lower volatility such as the FTSE, with a daily normalized impact 
close to 5%. Regarding its relationship with the index return, as ex
pected, greater volatility tends to give greater returns except in the 
case of the Shanghai market, which has greater volatility than the 
Hang Seng index but smaller returns, showing a worse Sharpe Ratio 
(Sharpe, 1994).

5. Empirical results

We start this section by estimating the fractional differencing 
parameter of each series separately. For this purpose, we consider 
the following model,

= + + = =t x L x u ty ; (1 ) , 1, 2, .,d
t tt 0 1 t (2) 

where yt refers to the observed time series (price indices in logs) and 
we look separately at the cases of no deterministic terms (i.e., β0 = β1 

Fig. 2. Relative index performance. 

Fig. 3. Volatility coefficients and CAGR returns. 

Table 1 
Volatility coefficient (Standard Deviation/Average) on different sample periods. 

Vol. Coefficient SP500 DOW DAX FTSE NIKKEI H SENG SHANGHAI AVG

Daily 36,20% 34,30% 29,10% 14,40% 33,60% 15,80% 18,40% 25,97%
Weekly 35,70% 33,80% 28,50% 13,90% 33,20% 15,10% 18,00% 25,46%
Monthly 35,50% 33,60% 28,20% 13,80% 33,10% 15,00% 17,90% 25,30%
Daily-Monthly 0,70% 0,70% 0,90% 0,60% 0,50% 0,80% 0,50% 0,67%
Normalized Dailyv 1,93% 2,04% 3,09% 4,17% 1,49% 5,06% 2,72% 2,93%
Total return 295,94% 231,23% 166,38% 34,40% 187,43% 81,56% 61,98% 151,27%
CAGR 13,33% 11,50% 9,32% 2,72% 10,07% 5,57% 4,48% 8,14%
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= 0 a priori in (2)); including only an intercept (i.e., β1 = 0 a priori); 
and with an intercept and a linear time trend, choosing the more 
appropriate model by using the corresponding t- values of the 

estimated coefficients. This selection is based on the t-values of the 
coefficients in the d-differenced processes, noting that the two 
equations in (2) can be expressed as

= + + =t u tỹ 1̃ ˜ , 0 , 1 , .,t tt 0 1 t (3) 

with = L yỹ (1 ) ;d
tt = L1̃ (1 ) 1d

t and =t̃t L t(1 ) ,d and 
noting that ut is I(0) by construction, the t-values on (3) remain valid.

As mentioned above, the estimation of the parameters in (2) is 
conducted via Robinson (1994), which is a very general testing 
procedure that allows us to consider model (2) as a particular case of 
his tests, displaying a standard normal limiting distribution, and 
holding for any real value d, and thus, not being restricted to the 
stationary region as is required with other procedures. Employing 
other parametric (Sowell, 1992; Beran, 1995) and semiparametric 
methods (Robinson, 1995; Phillips & Shimotsu, 2004; Shimotsu, 
2010) produced essentially the same results.

Tables 2–4 report the estimated coefficients for d (and the as
sociated 95% confidence bands), the intercept (β0) and the time trend 
(β1) respectively for the daily, weekly and monthly data. The upper 
part of the tables refers to the case of no autocorrelation, i.e., with 
white noise errors, while the lower panel reports the estimates 
under the assumption of autocorrelation. Here, we employ a non- 
parametric approach due to Bloomfield (1973). It is non-parametric 
in the sense that no explicit formula is displayed for the error term, 
being simply described in terms of its spectral density function, 
whose logged form approximated the one of AR structures.

We start with the daily data. Focusing first on the results based on 
no autocorrelation, we observe that all values of d are around 1.00, 
though we observe some differences across the series. Thus, evidence 
of mean reversion (i.e., estimates of d significantly below 1) are ob
served in the cases of the two American indices, Dow Jones and S& 
P500; however, for the remaining five cases, the null hypothesis of a 
unit root (i.e., d = 1 or I(1)) cannot be rejected. Thus, according to this 
simple model, the random walk hypothesis cannot be rejected in five 
out of the seven series examined, supporting in these cases a weak 
form of the Efficient Market Hypothesis (EMH). If autocorrelation is 
permitted (in the lower part of the table), the I(1) hypothesis cannot be 
rejected in any single case. Focusing on the estimated coefficients 
(Table 2b) we notice that a time trend is required for the Dow Jones, 
Nikkei and S&P500 with no autocorrelation, and for the Dax and S& 
P500 with autocorrelation. This significant (positive) trend, however, is 
not very relevant noting that the time trend becomes a constant if d = 1, 
and it tends to zero for d < 1.2 As a conclusion, the results based on daily 
data indicate little support for the mean reversion hypothesis, finding 
evidence of this in only two of the US indices, and those to a very small 
degree (the coefficient for the differencing parameter is very close to 1, 
(0.92)) in both series

Next, we look at the weekly data (Table 3). Here, evidence of mean 
reversion is found again in the two American indices (Dow Jones and S 
&P500) and this occurs for the two cases of white noise and auto
correlated errors. Nevertheless, the values are again large and close to 1 
implying a very long-lived effect of shocks and a very small degree of 
reversion to the mean. (The estimates of d are now 0.90 and 0.85 re
spectively for white noise and autocorrelation in the case of the Dow 
Jones, and 0.91 and 0.83 for the S&P500). Finally, using monthly data 
(Table 4) the values of d are smaller than in the previous tables, and 
mean reversion is now observed once more in the two American in
dices along with the Dax with autocorrelated errors. The estimates of d 
are now even smaller than in the previous cases, and d is equal to 0.80 
for Dow Jones and 0.79 for S&P500 under the assumption of no au
tocorrelation for the error term, and 0.64 (Dow Jones), 0.61 (Dax) and 
0.59 (S&p500) with autocorrelation.

Table 2 
Estimated coefficients in the logged transformed daily data. 

DAILY i) No autocorrelation
Series d Intercept Time trend
DAX 1.01 (0.98, 1.04) 8.5119 (635.19) —
DOW JONES* 0.92 (0.90, 0.95)* 9.1054 (799.93) 0.0004 (3.68)
HANG SENG 1.00 (0.97, 1.03) 9.6180 (756.13) —
NIKKEI 0.98 (0.96, 1.01) 9.0888 (662.77) 0.0003 (1.78)
FTSE 0.98 (0.95, 1.02) 8.4252 (768.15) —
SHANGAI 1.02 (0.99, 1.05) 7.5387 (538.58) —
S&P 500* 0.92 (0.89, 0.94)* 6.8341 (586.81) 0.0004 (3.93)
DAILY ii) With autocorrelation
DAX 0.98 (0.94, 1.04) 8.5109 (626.02) 0.0003 (1.71)
DOW JONES 1.05 (1.00, 1.11) 9.1100 (802.70) —
HANG SENG 1.00 (0.94, 1.04) 9.6189 (756.82) —
NIKKEI 1.00 (0.94, 1.04) 9.0892 (663.12) —
FTSE 0.95 (0.91, 1.01) 8.4249 (769.96) —
SHANGAI 1.01 (0.97, 1.05) 7.5390 (538.50) —
S&P 500 1.03 (0.98, 1.07) 6.8373 (587.03) 0.0005 (1.83)

The values in parenthesis in column 2 are the associated 95% confidence bands for the 
values of d. In columns 3 and 4 they are t-values. * means evidence of mean reversion 
at the 5% level.

Table 3 
Estimates coefficients on the logged transformed weekly data. 

WEEKLY i) No autocorrelation
Series d Intercept Time trend
DAX 0.97 (0.90, 1.04) 8.5095 (281.33) —
DOW JONES* 0.90 (0.84, 0.98)* 9.1018 (380.77) 0.0019 (3.62)
HANG SENG 0.98 (0.93, 1.05) 9.6174 (354.49) —
NIKKEI 0.97 (0.91, 1.04) 9.0860 (307.71) 0.0017 (1.71)
FTSE 0.94 (0.88, 1.02) 8.4225 (360.31) —
SHANGAI 1.05 (1.00, 1.12) 7.5026 (252.55) —
S&P 500* 0.91 (0.84, 0.98)* 6.8267 (286.51) 0.0021 (3.87)
WEEKLY ii) With autocorrelation
DAX 0.90 (0.79, 1.04) 8.5000 (284.17) 0.0016 (2.14)
DOW JONES* 0.85 (0.73, 0.99)* 9.0911 (385.33) 0.0019 (4.90)
HANG SENG 0.93 (0.84, 1.05) 9.6144 (356.09) —
NIKKEI 0.91 (0.82, 1.01) 9.0860 (310.05) 0.0017 (2.45)
FTSE 0.89 (0.79, 1.00) 8.4189 (364.00) —
SHANGAI 1.06 (0.97, 1.18) 7.5018 (252.72) —
S&P 500* 0.83 (0.71, 0.98)* 6.8180 (292.81) 0.0021 (6.24)

The values in parenthesis in column 2 are the associated 95% confidence bands for the 
values of d. In columns 3 and 4 they are t-values. * means evidence of mean reversion 
at the 5% level.

Table 4 
Estimated coefficients on the logged transformed monthly data. 

MONTHLY i) No autocorrelation
Series No terms A constant A linear trend
DAX 0.90 (0.77, 1.09) 8.3675 (160.13) 0.0071 (2.53)
DOW JONES* 0.80 (0.68, 0.97)* 8.9750 (231.30) 0.0087 (6.36)
HANG SENG 0.94 (0.82, 1.08) 9.5020 (176.69) —
NIKKEI 0.97 (0.85, 1.13) 8.9793 (173.68) 0.0074 (1.97)
FTSE 0.93 (0.83, 1.07) 8.3320 (220.50) —
SHANGAI 1.03 (0.90, 1.21) 7.5917 (114.24) —
S&P 500* 0.79 (0.67, 0.96)* 6.7079 (171.70) 0.0097 (7.26)
MONTHLY ii) With autocorrelation
DAX* 0.64 (0.46, 0.86)* 8.4066 (189.81) 0.0075 (8.49)
DOW JONES* 0.61 (0.42, 0.85)* 8.9966 (2171.44) 0.0088 (14.53)
HANG SENG 0.96 (0.46, 1.31) 9.4988 (176.41) —
NIKKEI 0.81 (0.63, 1.08) 8.9861 (180.55) 0.0075 (4.11)
FTSE 0.89 (0.66, 1.11) 8.3337 (221.94) —
SHANGAI 0.75 (0.51, 1.04) 7.6653 (125.44) —
S&P 500* 0.59 (0.34, 0.85)* 6.7405 (206.33) 0.0097 (17.12)

The values in parenthesis in column 2 are the associated 95% confidence bands for the 
values of d. In columns 3 and 4 they are t-values. * means evidence of mean reversion 
at the 5% level.

2 Note that if d = 1 in (2) or (3) with ut as a white noise process, the model becomes 
a random walk with a drift.
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In general, a feature observed across these tables is that the esti
mated values of d decreases as we move from daily to weekly or 
monthly data, showing a direct relationship between the data frequency 
and persistence. Tables 5a and 5b show the comparison between the 
estimates of the differencing parameter d, with no autocorrelation and 
autocorrelation error adjustments between different sampling periods. It 
can also be seen that “Linear trend” calculations offer very similar results 
to the “constant” adjustments, however, there is no evidence of a strong 
relationship between d, its changes between data frequency and the 
volatility coefficient of the index.

This is consistent with the work by Caporale et al. (2013), among 
many others, which show that lower degrees of integration are as
sociated with lower frequencies in the case of the US dollar / British 
pound spot exchange rate. We also support this evidence with the 
lower degrees of integration corresponding to the monthly data. In 
addition, a small degree of mean reversion is found in the two 
American indices (S&P500 and Dow Jones).

In what follows we look at the potential existence of long run co- 
movements between the series, by testing the order of integration in 
a one-by-one relationship between the variables. Here we focus only 

on the daily data as it provides the greater volatility coefficient, and 
on the d parameter. Table 6 refers to the case of uncorrelated (white 
noise) errors, while Table 7 allows for autocorrelation throughout 
the model of Bloomfield (1973).

Starting with the results based on uncorrelated errors, we ob
serve that the time trend is statistically significant in nine cases. 
Apparently, this could be an indication of lack of convergence be
tween the series; note, however, that this is not the case since the 
time trend coefficients tend to a constant as the order of integration 
approaches 1. Focusing on these orders of integration, mean rever
sion is now found in practically all cases, though the values of d are 
relatively high in all cases. The only two cases where the I(1) hy
pothesis cannot be rejected correspond to Dax - FTSE and Dow Jones 
– S&P500, that is in the European and US relationships, In all the 
other cases, the values are significantly below 1, the lowest values 
corresponding to Nikkei – S&P500 (d = 0.74), Dow Jones – Nikkei 
(0.75), FTSE – S&P500 (0.76), and Dax – Nikkei, Dow Jones – FTSE 
and Hang Seng – S&P500, with d = 0.77.

Allowing autocorrelation in the error term, the estimated values 
of d are slightly higher and weak mean reversion is found in a lower 

Table 5a 
Comparison between the estimates of d on the logged transformed data with no autocorrelation. 

DAX DOW JONES HANG SENG NIKKEI FTSE SHANGAI S&P 500

No terms
Daily 1.00 

(0.97, 1.03)
1.00 
(0.97, 1.03)

1.00 
(0.97, 1.03)

1.00 
(0.97, 1.03)

1.00 
(0.97, 1.03)

1.00 
(0.97, 1.03)

1.00 
(0.97, 1.03)

Weekly 0.99 
(0.94, 1.05)

0.99 
(0.94, 1.05)

0.99 
(0.94, 1.05)

1.00 
(0.94, 1.06)

0.99 
(0.94, 1.06)

1.00 
(0.95, 1.06)

0.99 
(0.94, 1.05)

Monthly 0.96 
(0.86, 1.10)

0.96 
(0.86, 1.10)

0.98 
(0.88, 1.12)

0.97 
(0.87, 1.11)

0.96 
(0.86, 1.10)

0.99 
(0.89, 1.13)

0.97 
(0.87, 1.10)

A constant
Daily 1.01 

(0.98, 1.04)
0.92 
(0.90, 0.95)

1.00 
(0.97, 1.03)

0.98 
(0.96, 1.00)

0.98 
(0.95, 1.02)

1.02 
(0.99, 1.05)

0.92 
(0.89, 0.94)

Weekly 0.97 
(0.90, 1.04)

0.90 
(0.84, 0.98)

0.98 
(0.93, 1.05)

0.97 
(0.91, 1.04)

0.94 
(0.88, 1.02)

1.05 
(1.00, 1.12)

0.91 
(0.84, 0.98)

Mothly 0.89 
(0.75, 1.10)

0.78 
(0.69, 0.97)

0.94 
(0.82, 1.08)

0.97 
(0.85, 1.14)

0.93 
(0.83, 1.07)

1.03 
(0.90, 1.21)

0.75 
(0.66, 0.95)

A linear trend
Daily 1.01 

(0.98, 1.04)
0.92 
(0.90, 0.95)

1.00 
(0.97, 1.03)

0.98 
(0.96, 1.01)

0.98 
(0.95, 1.02)

1.02 
(0.99, 1.05)

0.92 
(0.89, 0.94)

Weekly 0.97 
(0.90, 1.04)

0.90 
(0.84, 0.98)

0.98 
(0.93, 1.05)

0.97 
(0.91, 1.04)

0.95 
(0.88, 1.02)

1.05 
(1.00, 1.12)

0.91 
(0.84, 0.98)

Monthly 0.90 
(0.77, 1.09)

0.80 
(0.68, 0.97)

0.94 
(0.83, 1.08)

0.97 
(0.85, 1.13)

0.93 
(0.83, 1.07)

1.03 
(0.90, 1.21)

0.79 
(0.67, 0.96)

Table 5b 
Comparison between the estimates of d on the logged transformed data with autocorrelation errors. 

DAX DOW JONES HANG SENG NIKKEI FTSE SHANGAI S&P 500

No terms
Daily 0.99 

(0.95, 1.03)
1.00 
(0.96, 1.04)

1.00 
(0.95, 1.03)

1.00 
(0.94, 1.03)

0.99 
(0.95, 1.03)

1.01 
(0.96, 1.05)

0.99 
(0.95, 1.04)

Weekly 0.97 
(0.89, 1.08)

0.97 
(0.90, 1.09)

0.98 
(0.90, 1.08)

0.98 
(0.90, 1.08)

0.98 
(0.90, 1.08)

1.01 
(0.91, 1.10)

0.99 
(0.89, 1.09)

Monthly 0.97 
(0.79, 1.20)

0.95 
(0.77, 1.19)

0.95 
(0.79, 1.19)

0.96 
(0.77, 1.21)

0.95 
(0.77, 1.19)

0.96 
(0.79, 1.20)

0.96 
(0.79, 1.20)

A constant
Daily 0.98 

(0.93, 1.04)
1.05 
(1.00, 1.11)

1.00 
(0.94, 1.04)

1.00 
(0.94, 1.04)

0.95 
(0.91, 1.01)

1.01 
(0.97, 1.05)

1.03 (0.98, 1.07)

Weekly 0.90 
(0.78, 1.04)

0.85 
(0.75, 0.99)

0.93 
(0.84, 1.05)

0.91 
(0.82, 1.01)

0.89 
(0.79, 1.00)

1.06 
(0.97, 1.18)

0.83 (0.72, 0.98)

Mothly 0.56 
(0.48, 0.76)

0.61 
(0.54, 0.74)

0.96 
(0.46, 1.31)

0.80 
(0.64, 1.09)

0.89 
(0.66, 1.11)

0.75 
(0.51, 1.04)

0.59 (0.52, 0.69)

A linear trend
Daily 0.98 

(0.94, 1.04)
1.05 
(1.00, 1.11)

0.99 
(0.94, 1.03)

0.99 
(0.94, 1.03)

0.95 
(0.91, 1.01)

1.01 
(0.97, 1.05)

1.03 
(0.98, 1.07)

Weekly 0.90 
(0.79, 1.04)

0.85 
(0.73, 0.99)

0.93 
(0.85, 1.05)

0.91 
(0.82, 1.01)

0.89 
(0.80, 1.00)

1.06 
(0.97, 1.18)

0.83 
(0.71, 0.98)

Monthly 0.64 
(0.46, 0.86)

0.61 
(0.42, 0.85)

0.96 
(0.70, 1.28)

0.81 
(0.63, 1.08)

0.90 
(0.73, 1.10)

0.76 
(0.53, 1.04)

0.59 
(0.34, 0.85)
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number of cases (in 14 out of the 21 cases presented) the lowest 
values corresponding now to FTSE – S&P500 (0.89), Dow Jones – 
FTSE (0.91) and Dax – S&P500 (0.92). Table 8 shows a final com
parison that groups the cases under the different regions under 
study. It can be said that allowing autocorrelation errors renders the 
relationships more homogeneous, as the average value of d calcu
lated with white noise errors is around d=0.85 with a volatility 
coefficient of near 10%. Allowing for autocorrelation errors helps the 
reduction in the dispersion of results with a volatility coefficient of 
near 4% with a d coefficient smaller though very close to one in all 
cases (d = 0.96).

We can conclude by saying that there is some evidence of 
comovements in the vis-à-vis relationship between the indices, 

observing some degree of mean reversion in the majority of the 
cases. Thus, in the event of an exogenous shock affecting any of these 
relationships, its effect will tend to disappear in the long run though 
it may take some time. We should note here that the analysis has 
been conducted on the differences between the indices (and not on 
the residuals of a regression of one index against another as might be 
the case in a proper analysis of cointegration). The reason is that 
using our approach we still rely on observed values rather than es
timated ones that would have required the computation of critical 
values to determine the existence of mean reversion. Other recent 
approaches based on fractional cointegration (such as the FCVAR 
model of Johansen & Nielsen, 2010, 2012) can be employed on these 
and other data.

Table 6 
White noise errors between differential series. 

Differential series d Intercept A time trend

DAX – FTSE 1.02 (0.99, 1.05) -0.0864 (-12.16) —
DAX – DOW JONES 0.83* (0.81, 0.86) 0.5956 (58.58) —
DAX – HANG SENG 0.85* (0.83, 0.88) 1.1112 (79.79) -0.00015 (-1.82)
DAX - NIKKEI 0.77* (0.75, 0.79) 0.5842 (40.20) —
DAX - SHANGAI 0.94* (0.92, 0.97) -0.9685 (-53.79) —
DAX – S&P500 0.82* (0.79, 0.84) -1.6745 (-164.80) 0.00012 (2.35)
DOW JONES – S&P500 0.98 (0.95, 1.01) -2.2716 (-880.93) —
DOW JONES – FTSE 0.77* (0.75, 0.79) -0.6754 (-78.60) -0.00028 (-9.48)
DOW JONES – HANG SENG 0.79* (0.77, 0.81) 0.5199 (38.21) -0.00021 (-4.09)
DOW JONES – NIKKEI 0.75* (0.73, 0.77) — —
DOW JONES – SHANGHAI 0.93* (0.91, 0.95) -1.5641 (-94.68) —
FTSE – HANG SENG 0.84* (0.82, 0.87) 1.1957 (97.64) —
FTSE – NIKKEI 0.81* (0.79, 0.83) 0.6656 (48.38) 0.00023 (3.67)
FTSE – SHANGHAI 0.94* (0.92, 0.97) -0.8826 (-53.30) —
FTSE – S&P500 0.76* (0.74, 0.78) -1.5951 (-183.97) 0.00032 (11.75)
HANG SENG – NIKKEI 0.92* (0.89, 0.94) -0.5290 (-39.46) —
HANG SENG – SHANGHAI 0.84* (0.82, 0.86) -2.0679 (-117.66) —
HANG SENG – S&P500 0.77* (0.75, 0.79) -2.7919 (-207.37) 0.00027 (5.78)
NIKKEI – SHANGHAI 0.91* (0.88, 0.94) -1.5457 (-81.21) —
NIKKEI – S&P500 0.74* (0.72, 0.76) -2.2611 (-161.49) 0.00010 (2.55)
SHANGHAI – S&P500 0.92* (0.90, 0.95) -0.7087 (-42.90) 0.00027 (1.67)

*: Evidence of mean reversion (d < 1) at the 5% level.

Table 7 
Autocorrelated errors between differential series. 

Differential series d Intercept A time trend

DAX – FTSE 1.00 (0.94, 1.04) -0.0861 (-12.11) -0.00022 (-1.71)
DAX – DOW JONES 0.95* (0.91, 0.99) 0.5666 (57.38) —
DAX – HANG SENG 0.95* (0.91, 0.99) 1.1078 (78.32) —
DAX – NIKKEI 0.93* (0.89, 0.97) 0.5792 (38.03) —
DAX – SHANGAI 0.98 (0.94, 1.03) -0.9712 (-53.84) —
DAX – S&P500 0.92* (0.86, 0.97) -1.6749 (-161.08) —
DOW JONES – S&P500 0.93* (0.88, 0.97) 2.2714 (-885.34) 0.000045 (1.63)
DOW JONES – FTSE 0.91* (0.87, 0.96) -0.6811 (-75.81) -0.00029 (-3.52)
DOW JONES – HANG SENG 0.96* (0.91, 0.99) 0.5109 (36.37) —
DOW JONES – NIKKEI 0.95* (0.91, 0.99) — —
DOW JONES – SHANGHAI 1.03 (0.97, 1.06) -1.5718 (-95.22) —
FTSE – HANG SENG 0.94* (0.88, 0.97) 1.1939 (95.39) —
FTSE – NIKKEI 0.96* (0.92, 0.99) 0.6644 (47.18) —
FTSE – SHANGHAI 0.99 (0.95, 1.03) -0.8655 (-53.39) —
FTSE – S&P500 0.89* (0.86, 0.94) -1.5907 (-175.27) 0.00034 (4.66)
HANG SENG – NIKKEI 1.00 (0.96, 1.05) -0.5294 (-39.40) —
HANG SENG – SHANGHAI 0.95* (0.88, 0.99) -2.0771 (-116.15) —
HANG SENG – S&P500 0.93* (0.86, 0.98) -2.7838 (-198.61) 0.00026 (1.76)
NIKKEI – SHANGHAI 0.99 (0.94, 1.03) -1.5495 (-81.04) —
NIKKEI – S&P500 0.93* (0.89, 0.98) -2.2541 (-152.38) —
SHANGHAI – S&P500 1.02 (0.97, 1.05) -0.7012 (-42.45) —

*: Evidence of mean reversion (d < 1) at the 5% level.
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6. Concluding comments

The orders of integration in seven European, Asian and American 
stock market indices have been investigated in this work, firstly 
individually, and then by looking at the co-movements across the 
series in one-to-one differential relationships between them in the 
period from 2009 to 2020, comparing monthly, weekly and daily 
sampling periods.

The results obtained, based on fractional integration methods 
indicate that all the individual series are highly persistent with or
ders of integration very close to 1 in the majority of the cases, 
especially when allowing for autocorrelation errors. Evidence of 
mean reversion (i.e., estimates of d significantly below 1) is only 
obtained in some cases for the two American indices (S&P500 and 
Dow Jones) and generally, lower degrees of integration are obtained 
at lower (monthly) frequencies.

These results, showing little evidence of mean reversion are 
consistent with some other previous works (DePenya & Gil-Alana, 
2004; Tabak, 2007; Narayan, 2008; Hasanov, 2009; Gozbasi et al., 
2014; Tiwari & Kyophilavon, 2014; etc.), and the fact that there is a 
reduction in the magnitude of d at lower (monthly) frequencies is 
also consistent with Caporale et al. (2013) who show that lower 
degrees of integration were associated with lower frequencies.3 Our 
results for the individual series differ from Adekoya (2021) who 
found evidence of mean reversion and long memory in 18 OECD 
countries using monthly samples and longer periods of analysis than 
in our work (in that paper the data spans from January, 1973 to 
August, 2018) and from Caporale et al. (2020a, 2020b) regarding the 
Russian market that found no-persistence or mean-reversion with 
daily samples between 2010 and 2018. These differences might be 

associated with the different sampling periods and the shock cov
erage. Other factors such as the globalization or the faster market 
behavior in recent times due to Internet and automatic computer 
orders could be brought into consideration when investigating these 
issues and should be analyzed in further research

Looking at the order of integration of the one-to-one differential 
series, we notice a reduction in the degree of integration, though the 
estimated values of d are relatively high. This implies that the long 
run equilibrium process is slow, and no evidence of standard coin
tegration across the series is apparent. The regional relationships 
with white noise calculations show evidence of stronger mean re
version, especially in the US-European markets but weaker in Asian- 
US and Asian-European directions, and very weak in the intra-region 
relationship at both white noise and autocorrelated errors. These 
results are in line with and complement those from Caporale et al. 
(2016), who analyzed the SP500 and the EuroStoxx50 for longer 
periods with a different cointegration methodology, demonstrating 
fractional cointegration at least for the subsample from December 
1996 to March 2009, and ending when the global financial crisis was 
still severe. Other recent papers such as Lyócsa and Horváth (2018)
or Budd (2018) agree in the transmission between markets. How
ever, our study follows a different technique, showing evidence of 
weak mean reversion in the one-to-one differential comparisons, 
that also depends on the period of analysis and the sampling fre
quency used. Further research in this field should investigate other 
issues such as the potential presence of structural breaks and/or 
non-linearities in the data. This is relevant especially if we take into 
account that some authors have claimed that fractional integration 
may be a spurious phenomenon caused by the presence of breaks in 
the data (Diebold & Inoue, 2001; Ohanissian et al., 2008; Jin & Zhang, 
2018; etc.) or even non-linearities (Granger & Hyung, 2004; 
Kuswanto & Sibbertsen, 2008; etc.). In this context, the linear time 
trend employed in this paper can be replaced by alternative non- 
linear trends using, for example, Chebyshev polynomials in time as 

Table 8 
Regional comparison of differential series. 

White noise errors Autocorrelated errors

Series d Min Max Std. Dev/ Average d Min Max Std. Dev/ Average

SAME REGION
DAX – FTSE 1.02 0.99 1.05 1.00 0.94 1.04
DOW JONES – S&P500 0.98 0.95 1.01 0.93 0.88 0.97
HANG SENG – NIKKEI 0.92 0.89 0.94 1.00 0.96 1.05
NIKKEI – SHANGHAI 0.91 0.88 0.94 0.99 0.94 1.03
HANG SENG – SHANGHAI 0.84 0.82 0.86 0.95 0.88 0.99
Average 0.93 0.91 0.96 7.4% 0.97 0.92 1.02 3.3%
EUROPE - ASIA
DAX - SHANGAI 0.94 0.92 0.97 0.98 0.94 1.03
FTSE – SHANGHAI 0.94 0.92 0.97 0.99 0.95 1.03
DAX – HANG SENG 0.85 0.83 0.88 0.95 0.91 0.99
FTSE – HANG SENG 0.84 0.82 0.87 0.94 0.88 0.97
FTSE – NIKKEI 0.81 0.79 0.83 0.96 0.92 0.99
DAX - NIKKEI 0.77 0.75 0.79 0.93 0.89 0.97
Average 0.86 0.84 0.89 8.1% 0.96 0.92 1.00 2.4%
EUROPE-US
DAX – DOW JONES 0.83 0.81 0.86 0.95 0.91 0.99
DAX – S&P500 0.82 0.79 0.84 0.92 0.86 0.97
DOW JONES – FTSE 0.77 0.75 0.79 0.91 0.87 0.96
FTSE – S&P500 0.76 0.74 0.78 0.89 0.86 0.94
Average 0.80 0.77 0.82 4.4% 0.92 0.88 0.97 2.7%
US-ASIA
DOW JONES – SHANGHAI 0.93 0.91 0.95 1.03 0.97 1.06
SHANGHAI – S&P500 0.92 0.90 0.95 1.02 0.97 1.05
DOW JONES – HANG SENG 0.79 0.77 0.81 0.96 0.91 0.99
HANG SENG – S&P500 0.77 0.75 0.79 0.93 0.86 0.98
DOW JONES – NIKKEI 0.75 0.73 0.77 0.95 0.91 0.99
NIKKEI – S&P500 0.74 0.72 0.76 0.93 0.89 0.98
Average 0.82 0.80 0.84 10.5% 0.97 0.92 1.01 4.6%
Overall 0.85 0.83 0.88 9.7% 0.96 0.91 1.00 3.8%

3 The series examined in that paper were at high frequencies with a duration of one 
and a half days for the time period 13/05/2010 (11:47) – 14/05/2010 (21:07).
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in Cuestas and Gil-Alana (2016), Fourier functions (Gil-Alana & Yaya, 
2021) or neural networks (Yaya et al., 2021). Work in these directions 
is now in progress.
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