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Abstract: This work provides an analytical approach to characterize and determine solutions to
a porous medium system of equations with views in applications to invasive-invaded biological
dynamics. Firstly, the existence and uniqueness of solutions are proved. Afterwards, profiles of
solutions are obtained making use of the self-similar structure that permits showing the existence of
a diffusive front. The solutions are then studied within the Travelling Waves (TW) domain showing
the existence of potential and exponential profiles in the stable connection that converges to the
stationary solutions in which the invasive species predominates. The TW profiles are shown to
exist based on the geometry perturbation theory together with an analytical-topological argument
in the phase plane. The finding of an exponential decaying rate (related with the advection and
diffusion parameters) in the invaded species TW is not trivial in the nonlinear diffusion case and
reflects the existence of a TW trajectory governed by the invaded species runaway (in the direction of
the advection) and the diffusion (acting in a finite speed front or support).

Keywords: porous medium equation; travelling waves; geometric perturbation; nonlinear diffusion;
advection
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1. Introduction

According to the Convention of Biological Diversity (p. 1, Ch. 1 [1]), the biological in-
vasion is defined as “. . . those alien species which threaten ecosystems, habitats or species”.
The problem analyzed can be understood within the perspective of an invasive species that
invades a region or space previously inhabited by the invaded species.

The interaction between invaded-invasive species has been analyzed based on a non-
linear diffusion previously in [2] to analyze biological cell dynamics related to a haptotactic
process in cancer. Furthermore, stability analysis for an haptotaxis dynamics in melanoma
invasion is provided in [3].

The reaction–diffusion problems with advection have been a source of research to
model different physical scenarios. In [4], the author analyzes the impact of an advection
coefficient to understand the hydrodynamical processes in combustion. In this case, it
is particularly relevant to accurately model the advection coefficient to couple different
involved mechanisms: chemical kinetic, thermodynamics, and fluid dynamics. A general
nonlinear time-dependent advection does not necessarily lead to purely monotonic solu-
tions; nonetheless, in [5], the authors analyze monotone properties of bounded Travelling
Waves (TW) solutions for a density dependent diffusion and a nonlinear convection.
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There are some analogies between predator–prey and invasive-invaded species models.
Indeed, when an invasive species reaches into a region (a living organ for example), the
invaded one may extinguish. Consequently, the invasive species may vanish as there is not
invaded species to interact with. This described dynamics can be regarded as a connection
with predator–prey processes as the predator vanishes whenever the prey disappears.
Note that predator–prey models have been analyzed recently with analytical and stability
methods. In [6], different forms of functional responses are provided for modelling the
predator–prey dynamic. The cited work considers the harvesting in the predator and the
density-dependent mortality in the prey to assess the Hopf bifurcation in the proximity of
the equilibrium point. In addition, the Hopf bifurcation method has been followed in [7]
to study a delayed density-dependent predator–prey system with Beddington–DeAngelis
functional response. The periodic dynamic in the solutions has been shown to exist as
a consequence of stochastic disturbance for a Holling II functional response [8]. Similar
stability and bifurcation methods have been used in [9] for a predator–prey model subject
to the Allee effect with a discrete-time Holling type-IV functional response. The mentioned
methods have been used as well in [10] to model an infected predator that consumes the
prey according to a Holling type-II response.

There exist some commonalities among Evan functions, Hopf bifurcation and Geomet-
ric Perturbation Theory. Indeed, the theories mentioned focus on the searching of solutions
stability and to qualitatively describe their behaviour. Solutions may be expressed as TW
profiles to this end. Note that the geometric perturbation theory, as a baseline support in
the search of TW profiles, is considered in this work.

The nonlinear diffusion considered in this work for modelling purposes is particularly
relevant, as it drives the mathematical approaches considered. Somehow, our work is
influenced by the seminal model proposed by Keller and Segel [11] to study the chemotaxis
walks in cells:

ut = ∇ · (d(u)u− χ(v)u∇u) x ∈ Ω, t > 0

vt = dv∆v− uv x ∈ Ω, t > 0,
(1)

where v is the chemical agent concentration and u is the cell density. The term d(u)
represents the diffusivity and χ(v) is the distribution of chemical agents sensitive to cells.
In several novel articles, the Keller and Segel model was extended to include different
forms of reaction and absorption terms (refer to [12–15]). The problem discussed in [16] was
proposed as an integro-differential system of equations with pressure effects to predict the
behaviour of cancerous cells, as an invasive species, spreading with a nonlinear diffusion
over healthy cells in a closed organ. In [17], the authors provide a complete analysis of a
chemotaxis process with a nonlocal reaction source where a uniform bound of solutions
are explored for different conditions in the involved coefficients.

The use of nonlinear diffusion is an oblique topic and has been used in other interesting
applications where numerical and purely analytical approaches have been followed. Such
nonlinear diffusion allows for accurately modelling physical phenomena in which porosity
is a governing parameter. The Darcy law involving nanofluids has been considered to derive
numerical solutions by the Successive Local Linearization Method [18]. The authors show
the different solution profiles obtained after the numerical exercise where the exponential
decay can be perceived. Such an exponential decay is immediate in the linear diffusion
case; nonetheless, for the nonlinear diffusion, further analytical assessments shall be done.
The effect of porosity in a partial slip for a peristaltic transport in a Jeffrey fluid has
been investigated in [19]. In addition, Ref. [20] employs a nonlinear diffusion to improve
the accuracy in simulating potential coagulation in an electromagnetic blood flow in
annular vessel geometries. In all the cited cases, the finite speed of propagation defines a
diffusive front. This is a common behaviour to all porous medium equations and shall be
characterized for the problem discussed in the present work.

Other models related with perturbation under nonlocal sources and attractive and
repulsion actions can be mentioned as precluding studies. In [21], the authors provide
an analysis about chemotactic phenomena driven by logistic and repulsive actions. Fur-
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thermore, in [22], the authors study a porous medium equation with different reaction–
absorption terms, depending in some cases on the gradient of the solution over a bounded
domain in RN , N ≥ 1.

2. Model Description and Methods

The problem P analyzed is as follows:

ut = ∆um + c · ∇u + v(1− u),

vt = ∆vm + c · ∇v− uv,

m > 1, u0(x), v0(x) > 0 ∈ L1(Rd) ∩ L∞(Rd),

(2)

where d > 1 or d = 1 for convenience and is later specified. The solving methods exposed
in this work aim to obtain explicit analytical solutions in the form of maximal, minimal
solutions and Travelling Waves. The spatial operator involves a nonlinear diffusion with
advection and is considered together with nonlinear coupled reaction–absorption terms.

The problem P justification is based on studying the invasive-invaded dynamic and
the mathematical properties introduced by the spatial operator. For this purpose:

Consider that the invasive species acts in accordance with the presence of the invaded
species. If the quantity of invaded is high, the temporal increasing rate in the invaded (ut)
shall be high; otherwise, the invasion will not succeed. As the invasive species proliferates
over time, there shall be a limit in its concentration; then, the temporal ratio (considered
positive) decreases because the invasive species progressively reaches its maximum station-
ary level in the medium. In addition, the invasive temporal rate depends on the invaded
concentration (v). This behaviour is intended to be modelled as a reaction term of the form:

ut = v(κ − u), (3)

where κ represents the maximum invasive species concentration in the given medium.
Without loss of generality, assume κ = 1.

The invaded species time vanishing rate is considered as:

vt = −vu, (4)

and aims to express that the decreasing rate is absolutely higher for increasing values of the
invasive species u and is dependent on its own invaded species existence in the medium.

An advection term is proposed to account for possible forced movement in the media.
The interaction of the advection, through the vector c, has the intention of modelling the
desertion behaviour in the invaded species, so that the runaway is oriented in the direction
of c and toward spatial areas not previously populated (represented by c · ∇v). In response
to the invaded species desertion, the invasive species will follow an advection process
given by the orientation c towards the same non-populated areas (represented by c · ∇u).

In addition, a nonlinear diffusion (Porous Medium Equation) is considered to model
the random movement of both species. As an alternative to the classical linear order two
diffusion, the Porous Medium Equation introduces concepts such as the finite speed of prop-
agation in the invaded species, which is admitted to account for a further reliable model.

The study of solutions for a Porous Medium Equation with advection and no reaction
has been widely analyzed in [23]. Nonetheless, the present work considers the effect of
the coupled reaction and absorption for which the mixed monotone behaviour induces a
different analytical treatment compared to that in [23].

This work begins by showing some regularity results together with uniqueness of
solutions. The degeneracy of the diffusivity leads to considering weak solutions defined
upon a test function φ ∈ C∞(Rd). Afterwards, profiles of maximal and minimal solutions
are shown to exist and analytically obtained based on the mixed monotone properties in
the reaction–absorption terms. In addition, the problem P is studied within the geometric
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perturbation theory to support the construction of analytical TW profiles. Finally, the finite
propagation and the exponential decay for v are shown in the proximity of the null solution,
i.e., when v → ε → 0+. The finite propagation is proved with a maximal solution so
that any other lower solution exhibits finite propagation as well. In addition, the finite
propagation is shown to provide a compact support that is mainly dependent on the
advection (invaded runaway) c. This means that the homogenizing effect of the diffusive
front is lost and the advection term drives the dynamic. This behaviour can be interpreted
as the invasive species concentrating efforts in the runaway direction c so that the invaded
species decreases exponentially even when the diffusion is nonlinear.

3. Existence and Uniqueness of Solutions

Let us consider a test function φ ∈ C∞(Rd) such that, for 0 < τ < t < T:∫
Rd

u(t) φ(t) =
∫
Rd

u(τ) φ(τ) +
∫ t

τ

∫
Rd

[u φt + um ∆φ− c · ∇φ u + v(1− u) φ]ds, (5)

∫
Rd

v(t) φ(t) =
∫
Rd

v(τ) φ(τ) +
∫ t

τ

∫
Rd

[v φt + vm ∆φ− c · ∇φ v− uv φ]ds. (6)

Considering r >> r0 > 0, the following uniformly parabolic quasilinear set of equa-
tions is defined (named Pφ):

u φt + um ∆φ− c · ∇φ u + v(1− u) φ = 0,
v φt + vm ∆φ− c · ∇φ v− uv φ = 0,

(7)

in Br × [0, T], with the following set of boundary and initial conditions:

(∇φ− u c) · ν = 0,
(∇φ− v c) · ν = 0,

(8)

over ∂Br × [0, T], where ν is the outer unitary normal vector in ∂Br and

u(x, 0) = u0(x),
v(x, 0) = v0(x),

(9)

initially on Br.
The problem Pφ has existence and uniqueness of solutions based on the mixed mono-

tone properties of the forcing terms [24]. For this purpose, note that the forcing part φ is a
monotone increasing (with φ) function and −φ is a monotone decreasing function.

Theorem 1. Given u0(x), v0(x) ∈ L1(Rd) ∩ L∞(Rd), the set of solutions u(x, t), v(x, t) are
bounded for all (x, t) ∈ Br × [0, T] with r >> 1.

Proof. Consider η ∈ R+ and sufficiently small, the following cut off function is de-
fined [25]:

ψη ∈ C∞
0 (Rd), 0 ≤ ψη ≤ 1,

ψη = 1 in Br−η , ψη = 0 in Rd − Br−η ,
(10)

so that
|∇ψη | ≤ ca

η ,

|∆ψη | ≤ ca
η2 .

(11)

After multiplication of (7) by ψη and integrating in Br × [τ, T]:∫ t
τ

∫
Br

u φtψη +
∫ t

τ

∫
Br

um ∆φψη −
∫ t

τ

∫
Br

c · ∇φ uψη +
∫ t

τ

∫
Br

v(1− u) φψη = 0,∫ t
τ

∫
Br

v φtψη +
∫ t

τ

∫
Br

vm ∆φψη −
∫ t

τ

∫
Br

c · ∇φ vψη −
∫ t

τ

∫
Br

uvψη φ = 0.
(12)
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The integrals for the advection term read:∫ t

τ

∫
Br

c · ∇φ uψη =
∫ t

τ

∫
Br

c · ∇φ∇uψη +
∫ t

τ

∫
Br

c · ∇φu∇ψη , (13)

For some large r >> r0 > 1 [25]:∫ t

τ
um ≤ c1(τ)r

2m
m−1 , (14)

and ∫ t

τ
u ≤ c2(τ)r

2
m−1 . (15)

Making the integration over fixed Br domains for r >> r0 >> 1 and admitting τ ← t,
the functions φ, ψη are considered stationary locally in time. Then, the integral term in the
diffusion reads: ∫ t

τ

∫
Br

um ∆φψη ≤
∫

Br
c1(τ)r

2m
m−1 ∆φψη . (16)

Given a fixed r, the following holds:∫
Br

c1(τ) r
2m

m−1 ∆φ ψη = c1(τ) r
2m

m−1

((
∇φ ψη

)
∂Br
−
∫

Br
∇φ · ∇ψη

)
. (17)

Note that (∇φψη)∂Br << 1 in (17) for r >> 1. Indeed, ψη is a bounded non-increasing
function and ∇φ→ 0 for r >> 1 as it it will be shown afterwards for a particular choice of
the test function. Now:∫

Br
c1(τ) r

2m
m−1∇φ · ∇ψη ≤

∫
Br

c1(τ) r
2m

m−1 |∇φ| ca

η
≤ c1(τ) ca

∫
Br

r
2m

m−1−1|∇φ|. (18)

Similarly for the the integrals in (13) and after arranging the spatial leading terms:∫ t

τ

∫
Br

c · ∇φ∇uψη +
∫ t

τ

∫
Br

c · ∇φu∇ψη ≤ c c2(τ)
∫ t

τ
r

2
m−1−1|∇φ|+ c c2(τ) ca

∫
Br

r
2

m−1−1 φ. (19)

Next, consider a test function φ of the form:

φ(x, s) = eg(s)(1 + r2)−β, (20)

where g(s) > 0 for 0 < s < t, g(t) = 0 and β shall be chosen to ensure the convergence of
the integrals in (18) and (19) as r → ∞. To this end, it suffices to consider:

β =
1

m− 1
. (21)

Returning to (12):∫ t
τ

∫
Br

u φtψη +
∫ t

τ

∫
Br

v(1− u) φψη =
∫ t

τ

∫
Br

c · ∇φ∇uψη +
∫ t

τ

∫
Br

c · ∇φu∇ψη +
∫ t

τ

∫
Br

um∇φ · ∇ψη ,∫ t
τ

∫
Br

v φtψη −
∫ t

τ

∫
Br

uvψη φ =
∫ t

τ

∫
Br

c · ∇φ∇vψη +
∫ t

τ

∫
Br

c · ∇φv∇ψη ,+
∫ t

τ

∫
Br

vm∇φ · ∇ψη .
(22)

The intention is to show that the left-hand integrals in (22) are finite, which is equiva-
lent to searching for the bound on the right-hand side terms. Indeed, and for the particular
expression of β in (21), the right-hand integrals are indeed bounded for r >> r0 > 1 over
Br domains. Then, ∫ t

τ

∫
Br

u φtψη +
∫ t

τ

∫
Br

v(1− u) φψη ≤ A(τ, t),∫ t
τ

∫
Br

v φtψη −
∫ t

τ

∫
Br

uvψη φ ≤ B(τ, t),
(23)
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for some finite locally in time defined A, B.
As both integrals are finite in τ < s < t < T, it is possible to conclude on the theorem

postulation about the boundness of solutions in Br × [0, ∞).

The next intention is to show the uniqueness of solutions:

Theorem 2. Assuming that (u, v) > (0, 0) is a minimal solution for P (2) in Rd × (0, T), then
(u, v) coincides with the maximal solution, i.e., the solution is unique.

Proof. Assume (û, v̂) to be the maximal solution to P in Rd × (0, T), such that:

(û(x, 0), v̂(x, 0)) = (u0(x) + ν, v0(x) + ν), (24)

with ν > 0 being arbitrarily small. In addition, define the minimal solution:

(u(x, 0), v(x, 0)) = (u0(x), v0(x)), (25)

such that the maximal and minimal solutions verify respectively:

ût = ∆ûm + c · ∇û + v̂(1− u),
v̂t = ∆v̂m + c · ∇v̂− uv.

(26)

ut = ∆um + c · ∇u + v(1− û),
vt = ∆vm + c · ∇v− ûv̂.

(27)

Then, for every test function φ ∈ C∞(Rd), the following expressions hold:

0 ≤
∫
Rd

(û− u)(t) φ(t) =
∫ t

0

∫
Rd

[(û− u) φt + (ûm − um)∆φ + c · ∇φ (û− u) + (v̂(1− u)− v(1− û) φ]ds, (28)

0 ≤
∫
Rd

(v̂− v)(t) φ(t) =
∫ t

0

∫
Rd

[(v̂− v) φt + (v̂m − vm)∆φ + c · ∇φ (v̂− v) + (ûv̂− uv) φ]ds. (29)

Let us define:

a1(x, s) =
[ ûm−um

û−u for û 6≡ u
mum−1 otherwise

]
, (30)

a2(x, s) =
[ v̂m−vm

v̂−v for v̂ 6≡ v
mvm−1 otherwise

]
. (31)

Given two fixed values for x and s = t ≤ T:

0 ≤ a1(x, s) ≤ c1(m, ‖u0‖∞, T), (32)

0 ≤ a2(x, s) ≤ c2(m, ‖v0‖∞, T). (33)

Consider the test function:

φ(|x|, s) = ek(T−s)(1 + |x|2)−γ, (34)

for some constants k and γ.
The test function verifies:

φt = −kφ(x, s),

|∇|x|φ| ≤ c3(γ, d)φ(x, s),

∆|x|φ ≤ c4(γ, d)φ(x, s),

(35)

such that:
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(û− u) φt + (ûm − um)∆φ + c · ∇φ (û− u) + (v̂(1− u)− v(1− û)) φ ≤ −(û− u) k φ

+ a1(û− u) c4φ + c c3φ (û− u) + L1(v̂− v) φ,
(36)

(v̂− v) φt + (v̂m − vm)∆φ + c · ∇φ (v̂− v) + (ûv̂− uv) φ ≤ −(v̂− v) k φ

+ a2(v̂− v) c4φ + c c3φ (v̂− v) + L2(û− u) φ,
(37)

where L1 = maxRd{(1− u)} and L2 = maxRd{v̂} are bounded as per Theorem 1.
The constant k shall be selected such that:

− k + a1c4 + c3c ≤ 0, −k + a2c4 + c3c ≤ 0. (38)

It suffices to consider:

k ≥ max(a1c4 + c3c, a2c4 + c3c), (39)

so that:
(−k + a1c4 + c3c)φ(û− u) ≤ 0,
(−k + a1c4 + c3c)φ(v̂− v) ≤ 0.

(40)

The expressions (28) and (29) read:

0 ≤
∫
Rd

(û− u)(t) φ(t) ≤
∫ t

0

∫
Rd

L1(v̂− v) φds, (41)

0 ≤
∫
Rd

(v̂− v)(t) φ(t) ≤
∫ t

0

∫
Rd

L2(û− u) φds. (42)

Make the d/dt in the previous expressions:

0 ≤ d
dt

∫
Rd

(û− u)(t) φ(t) ≤
∫
Rd

L1(v̂− v)(t) φ(t), (43)

0 ≤ d
dt

∫
Rd

(v̂− v)(t) φ(t) ≤
∫
Rd

L2(û− u)(t) φ(t). (44)

Letting us operate in the last two expressions with the equality, then:∫
Rd

(û− u)(t) φ(t) =
1
L2

d
dt

∫
Rd

(v̂− v)(t) φ(t), (45)

which can be replaced in (43):

d2

dt2

∫
Rd

(v̂− v)(t) φ(t) ≤ L1 L2

∫
Rd

(v̂− v)(t) φ(t). (46)

Define:
g(t) =

∫
Rd

(v̂− v)(t) φ(t); (47)

then, Equation (46) reads as a linear standard second order equation:

d2g(t)
dt2 = L1 L2g(t), (48)

with
g(0) = ν→ 0,
g′(0) = ν→ 0.

(49)
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Then, Equation (48) converges to the null solution. For the sake of simplicity, consider
g(t) = 0, concluding that:

v̂ = v. (50)

Now, returning to (41):

0 ≤
∫
Rd

(û− u)(t) φ(t) ≤ 0, (51)

to conclude that:
û = u, (52)

showing, then, the uniqueness of any positive solution to P.

4. Profiles of Solution

This section is devoted to the searching of upper and lower solutions considering
that the invasive species u(x, t) shall be non-decreasing (i.e., ut ≥ 0) while the invaded
one v(x, t) shall be non-increasing (i.e., vt ≤ 0). Note that in this chapter the advection
coefficient may be considered as a 1D parameter when required by the context. This is an
important hypothesis and reflects a constant invasive species behaviour when entering
into a domain (and at the same time a constant behaviour in the invaded one). The
constant advection hypothesis may be discussed further; for example, in [26], the advection
coefficient is determined in a porous medium as the relationship between the water flow
velocity and the range of volumetric water content. Probably a similar process can be
followed to model the invasive-invaded dynamics involved, where water flow velocity can
be regarded as the invasive species velocity of invasion and the volumetric water content
as the range of total concentration.

Theorem 3. A maximal solution v̂(x, t) for the invaded species is:

v̂(x, t) = v0(x)− (At)
1

m−1 , (53)

where

A ≥ δm−1

|x|
c

, (54)

being δ = min{v} > 0, |x| representing the spatial integration domain and 0 < t < |x|
c .

In addition, v̂ propagates through the support in (x, t) defined by the minimal approximation:

|x|min =

(
δm−1c2m

m− 1

)1/3

t2/3. (55)

Proof. Let us start with the equation in v. Considering self-similar solutions:

v̂(x, t) = t−α f (ξ), ξ = |x|tβ, (56)

to the upper profile equation:
v̂t = ∆v̂m + c · ∇v̂. (57)

Then, the following holds:

− αt−α−1 f + βξt−α−1 f ′ = G( f ′′, f ′, f , m)t−αm+2β + ct−α+β f ′. (58)

Making the corresponding equalities in the time exponents:

α =
−1

m− 1
; β = −1. (59)
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The self-similar profile shall, then, be obtained as a solution to the elliptic equation:

− α f + βξ f ′ = ( f m)′′ +
d− 1

ξ
( f m)′ + c f ′. (60)

Note that in the approximation:

βξ >> c , |x|t−1 >> |−c|, (61)

and the following elliptic equation holds for t << |x|
c :

βξ f ′ = ( f m)′′ +
d− 1

ξ
( f m)′ + α f , (62)

for which a solution is available [27,28]:

f (ξ) = (A− Bξ2)
1

m−1 , (63)

where A > 0 and B = (m−1)
2m . A is obtained by making ξ = 0 in (63), so that:

v̂(x, t) = A
1

m−1 t−α. (64)

Note that (58) provides supersolutions under the condition that each species’ concen-
tration is positive, hence min{uv} > 0. As ut > 0 and assuming u0 > 0, then it is required
that min{v} > 0. Considering δ = min{v} > 0, then:

v̂(x, t) = A
1

m−1 t−α > δ, (65)

so that:

A =
δm−1

t
≥ δm−1

|x|
c

, (66)

in the inner region t << |x|
c where |x| shall be understood as the maximum spatial variable

representing the integration domain.
The maximal time evolution v̂ is then given by:

v̂(x, t) = v0(x)− (At)
1

m−1 . (67)

Finally, v̂ is indeed an upper evolution. To show this, consider a solution v to the
original equation given by the absorption term −uv and define a t0:

0 < t0 <
|x|
c

, (68)

such that, for any τ with t0 < τ < |x|
c :

v(x, τ) ≤ v̂(x, t0). (69)

Now, for any t with τ < t < |x|
c :

v(x, τ + t) ≤ v̂(x, t0 + t). (70)

In the limit, τ → 0:
v(x, t) ≤ v̂(x, t), (71)

showing the upper behaviour of v̂ compared to v.
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The propagating support is obtained making:

f (ξ) = 0 , A = Bξ2, (72)

so that A and B can be replaced by their corresponding values. Then, the support propa-
gates as:

|x| ≥
(

δm−1c2m
m− 1

)1/3

t2/3 = |x|min. (73)

Note that solutions are of the form (53) in Rd × [0, ∞], so that, in the proximity of
δ→ 0+, the following time assessment holds:

tv =
(‖v0‖∞ − δ)m−1

A
. (74)

The expression (74) provides an estimation in time to consider a vanishing condition
for v, so that, for t > tv, the equation for ũ ≤ u reads:

ũt = ∆ũm + c · ∇ũ, (75)

and the following theorem holds in the search for a lower solution ũ:

Theorem 4. Consider
A1 = max

x∈Rd
{u0(x)}. (76)

The lower solution ũ(x, t) for the invasive species reads:

ũ(x, t) = u0(x) + A1t
1

m−1 , (77)

for

tv < t <
|x|
c

. (78)

Proof. Again, consider self-similar solutions of the form:

ũ(x, t) = t−αF(ξ), ξ = |x|tβ, (79)

to the lower profile Equation (75). Upon substitution of the self-similar solution (79) and
operating analogously as in (58), the following self-similar exponents are deterred:

α =
−1

m− 1
; β = −1. (80)

Assuming t < |x|
c , the self-similar profile F is obtained as a solution to the elliptic

equation:

βξF′ = (Fm)′′ +
d− 1

ξ
(Fm)′ + αF, (81)

for which the solution is, again, provided in [27,28]:

F(ξ) = (A1 − B1ξ2)
1

m−1 , (82)

for tv < t < |x|
c and A1 > 0, B = (m−1)

2m .
Making ξ = 0, the solution for ũ is:

ũ(x, t) = u0(x) + A1t
1

m−1 , (83)
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where
A1 = max

x∈Rd
{u0(x)}. (84)

Finally, the expression in (83) is shown to be a lower solution. For such purpose, let us
define t0, such that tv < t0 < |x|

c , and τ such that t0 < τ < |x|
c , then:

ũ(x, τ) ≤ u(x, t0). (85)

This last expression is valid provided |t0 − τ| << 1. Considering t′ with τ < t′ < |x|
c ,

then:
ũ(x, τ + t′) ≤ u(x, t0 + t′). (86)

After a time translation t = t0 + t′:

ũ(x, t) ≤ u(x, t), (87)

with tv < t
2 < |x|

c .

The next objective is to define a maximal solution for u and a minimal solution for v.
To this end, the following theorem holds:

Theorem 5. There exists a minimal solution ṽ(x, t) and a maximal solution û(x, t) in Rd × [0, T].
Furthermore, consider:

ṽ = γ = min
x∈Rd
{v0(x)}, (88)

Then, a maximal solution for u is:

û(x, t) = 1− (1− u0(x))e−γt. (89)

Proof. For building the maximal solution û(x, t), consider the following problem in u:

uε
t = ∆(uε)m + c · ∇uε + v(1− uε),

uε(x, 0) = u0(x) + ε, v(x, 0) = v0(x),

u0(x) > 0. v0(x) > 0 ∈ L1(Rd) ∩ L∞(Rd).

(90)

Solutions to problem (90) do exist under the Lipschitz condition in the reaction term
and the positive initial conditions (refer to Theorem 1).

Let us consider ε2 < ε, so that:

uε
t = ∆(uε)m + c · ∇uε + v(1− uε),

uε2
t = ∆(uε2)m + c · ∇uε2 + v(1− uε),

uε(x, 0) = u0(x) + ε > uε2(x, 0) = u0(x) + ε2 > 0.

(91)

The iteration process starts with ε, and, based on the monotony behaviour in the
reaction terms of (91), then uε2 < uε in accordance with the initial data for uε. The same
argument can be repeated for ε3 < ε2, so that uε3 < uε2 . The sequence defined as {uε} is
non-negative and non-increasing. Consequently, the following maximal solution in the
limit is defined:

û = lim
ε→0

uε. (92)

To construct the minimal solution for v, consider the problem:

vε
t = ∆(vε)m + c · ∇vε − (lim

ε→0
uε) vε

vε(x, 0) = v(x, 0) = v0(x) > 0.
(93)
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Solutions to (93) do exist (refer to Theorem 1).
Considering ε2 < ε, then:

uε2 < uε ⇒ vε2 > vε, (94)

based on the monotony properties in the reaction term of (93). The sequence {vε} is
non-decreasing as ε → 0. The minimal solutions for v are defined as per the monotone
limit:

ṽ = lim
ε→0

vε. (95)

Once the maximal and minimal solutions have been constructed and shown to exist,
the next intention is to search for a family of flat solutions uε, vε via the resolution of:

uε
t = γ(1− uε),

vε = γ = minx∈Rd{v0(x)},
uε(x, 0) = u0(x) + ε, vε(x, 0) = v0(x),

u0(x) > 0. v0(x) > 0 ∈ L1(Rd) ∩ L∞(Rd).

(96)

This last system can be solved by separation of variables, so that:

uε(x, t) = 1− (1− u0(x) + ε)e−γt. (97)

Then, for ε→ 0,
û(x, t) = 1− (1− u0(x))e−γt. (98)

On a physical basis, a value for γ shall be determined experimentally and can rep-
resent a constant homogeneous initial distribution of the invaded species in the domain.
Depending on the particular application, either the maximal or minimal solution may be
considered. For instance, if the intention is to model the minimal level of invaded species
that can face an invasive one, then the solution ṽ in (88) shall be taken into account together
with the solution û in (89). Such maximal solution would make sense in this case (minimal
invaded population) as the resistance to the invasion is relatively low, leading the invasive
species to prosper quickly via a maximal solution û. In addition, note that the maximal
solution for the invaded species (and hence any other solution below) propagates through
the support given in (55) which elucidates the finite propagation feature. Note that in the
inner region (inner compared to the diffusive front moving with finite propagation), the
desertion will guide the invaded species to move along the preferred direction c. If c is
high, then the propagating support (55), induced by the diffusion, will expand further.

5. Travelling Waves Analysis, Existence and Regularity

The TW profiles are provided by the following structured changes: u(x, t) = f (ξ), such
that ξ = x · nd − at ∈ R. Note that nd is a unitary vector in Rd defining the propagating
direction. In addition, a is the TW velocity and the profile f : R → (0, ∞) is such that
f ∈ L∞(Rd). For the sake of simplicity, the vector nd = (1, 0, ..., 0), then u(x, t) = f (ξ),
ξ = x− at ∈ R.

Previous to the formal structure of TW solutions, let us consider some remarks on TW
symmetries. Note that two TW are equivalent under translation ξ → ξ + ξ0 and symmetry
ξ → −ξ as the D’Alambert waves coordinate x − at is invariant under the translation
group. It shall be noted that such invariant symmetry does not necessarily hold when the
advection coefficient, c, is time dependent or when time-periodic boundaries are given. In
addition, and under these last two cases, monotonic TW solutions may not hold (the reader
can refer to [29] where periodic TW-solutions are analyzed in detail for a time-dependent
advection coefficient).
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Considering u(x, t) = f (ξ) and v(x, t) = g(ξ), then the problem P (2) is transformed
to the TW domain:

−a f ′ = ( f m)′′ + c f ′ + g(1− f ),

−ag′ = (gm)′′ + cg′ − f g,

f , g ∈ L∞(R),

f ′(ξ) > 0 , g′(ξ) < 0,

f (∞) = 1 , g(∞) = 0.

(99)

Working with the density and flux variables

X1 = f , Y1 = ( f m)′ , X2 = g , Y2 = (gm)′, (100)

the following system holds:

X′1 = 1
m X1−m

1 Y1,

Y′1 = −(a + c) 1
m X1−m

1 Y1 − X2(1− X1),

X′2 = 1
m X1−m

2 Y2,

Y′2 = X1X2 − (a + c) 1
m X1−m

2 Y2,

(101)

with the critical point (1, 0, 0, 0) that represents a situation in which the invasive species
wins over the invaded.

Geometric Perturbation Theory

The singular geometric perturbation theory is employed in this section to show the
asymptotic behaviour of a two-dimensional manifold defined to make simpler the assess-
ment of a TW analytical profile.

For this purpose, define the two-dimensional manifold as:

M0 = {X1, Y1, X2, Y2 / X′1 =
1
m

X1−m
1 Y1 ; Y′1 = −(a + c)

1
m

X1−m
1 Y1}, (102)

with critical point (1, 0, 0, 0).
The perturbed manifold Mε close to M0 is defined as:

Mε = {X1, Y1, X2, Y2 / X2 = ε ; Y′2 = 0 ; X′1 =
1
m

X1−m
1 Y1 ; Y′1 = −(a + c)

1
m

X1−m
1 Y1 − ε(1− X1)}. (103)

The intention is to use the Fenichel invariant manifold theorem [30] as formulated
in [31,32]. For this purpose, it is required to show that M0 is a normally hyperbolic manifold,
i.e., the eigenvalues of M0 in the linearized frame close to the critical point, and transversal
to the tangent space, have a non-zero real part. This is shown based on the following
two-dimensional equivalent flow associated with M0:

(
X′1
Y′1

)
=

 0
1
m

0 − a + c
m

( X1
Y1

)
. (104)

where the eigenvalues are (0 ,−(a + c)/m). For λ = 0, the eigenvector is [1, 0] which is
tangent to M0 to conclude that M0 is a hyperbolic manifold. The next objective is to prove
that Mε is locally invariant under the equations (flows) in (101). To this end, and according
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to [32]: for all R > 0, for all open interval J with (a + c) ∈ J and for any value of i ∈ N,
there exists a δ such that, for ε ∈ (0, δ), the manifold Mε is invariant. Hence, consider i ≥ 1
and the functions:

φ1 = ε,

φ2 = 0,

φ3 =
1
m

X1−m
1 Y1,

φ4 = −(a + c)
1
m

X1−m
1 Y1 − ε(1− X1),

(105)

which are Ci(BR(0)× I × [0, δ]) close to the critical condition (1, 0, 0, 0).
A value for R > 0 can be selected so as to assume that M0 ∩ BR(0) is large enough to

study the whole TW evolution. Note that δ is determined based on the computation of the
distance between the flows in Mε and M0. To this end, assume that the functions in each of
the flows are measurable a.e. in BR(0):

‖φM0
4 − φMε

4 ‖ ≤ δ‖1− X1‖. (106)

The distance between the manifolds keeps the normal hyperbolic condition for δ ∈
(0, ∞). For simplicity, assume δ = 1.

In the same way, given the two-dimensional manifold M1:

M1 = {X1, Y1, X2 ∼ ε, Y2 / X′2 =
1
m

X1−m
2 Y2 ; Y′2 = X2 − (a + c)

1
m

X1−m
2 Y2}, (107)

with the same critical point (1, 0, 0, 0), and the perturbed M′ε close to M1:

M′ε = {X1, Y1, X2, Y2 / X1 = 1; Y′1 = 0 ; X′2 =
1
m

X1−m
2 Y2 ; Y′2 = X1 X2 − (a + c)

1
m

X1−m
2 Y2}. (108)

The Fenichel invariant manifold theorem can be applied in the same manner as for
M0. Note that the two-dimensional equivalent flow associated with M1 is:

(
X′2
Y′2

)
=

 0
ε1−m

m

1 − (a + c)ε1−m

m

( X2
Y2

)
. (109)

The associated eigenvalues are both real
(
− (a + c)ε1−m

2m
± 1

2

√
((a+c)ε1−m)2

m2 + 4ε1−m

m

)
.

Hence, M1 is a hyperbolic manifold.
In the same manner, the next intention is to show that the manifold M′ε is locally

invariant under the flow (101) so that the manifold M1 can be represented as an asymptotic
approach to M′ε. For this purpose, consider the functions:

φ′1 = 1,

φ′2 = 0,

φ′3 =
1
m

X1−m
2 Y2,

φ′4 = Y′2 = X1 X2 − (a + c)
1
m

X1−m
2 Y2,

(110)

which are Ci(BR(0)× I × [0, δ]) in the proximity of the critical point (1, 0, 0, 0).
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In this case, δ is determined based on the following flows that are considered to be
measurable a.e. in BR(0):

‖φ′M1
4 − φ

′M′ε
4 ‖ ≤ δε‖1− X1‖ = δ′‖1− X1‖. (111)

The normal hyperbolic condition for both manifolds M1 and M′ε applies for δ′ ∈ (0, ∞).
In the sake of simplicity, consider δ′ = 1.

Once we have shown that M0 and M1, defined as two-dimensional manifolds, remain
invariant with regard to the four-dimensional manifolds Mε and M′ε respectively under
the flow (101), the TW profiles can be obtained operating in M0 and M1.

6. Travelling Waves Profiles and Finite Propagation

Based on the normal hyperbolic condition in the manifold M0 under the flow (101),
asymptotic TW profiles can be obtained. For this purpose, consider firstly:

X′1 =
1
m

X1−m
1 Y1 ; Y′1 = −(a + c)

1
m

X1−m
1 Y1 − X2(1− X1), (112)

such that the following family of trajectories in the phase plane (X1, Y1) holds:

dY1

dX1
= −(a + c)−mX2Xm−1

1
1− X1

Y1
= H(a, c, X1, X2, Y1), (113)

where 0 < X1 < 1 ; 0 < X2 < 1 ; Y1 > 0.
The existence of a convergent trajectory is shown based on a comparison with subsolu-

tions for (a + c) sufficiently small and supersolutions for (a + c) sufficiently large together
with topological assessment and the continuity of H.

For this purpose, note that, when (a + c) → 0, then dY1/dX1 < 0, while, when
(a + c) < 0 with |a + c| >> 1, dY1/dX1 > 0. Given the continuity of H, it is thus possible
to make a conclusion about the existence of a critical trajectory of the form:

− (a + c)−mX2Xm−1
1

1− X1

Y1
= H(a, c, X1, X2, Y1) = 0. (114)

Assuming now that the selected TW speed satisfies a << −c with |a + c| >> 1, then
the same solution applies with minor effects due to the advection term, which permits
assessing a TW speed only making assumptions on the bound of solutions; indeed:

a ∼ mX2Xm−1
1

1− X1

Y1
, (115)

for which a maximal bound is obtained as:

a <
m
A

, (116)

being A = minBR(0){Y1}. Now, coming to (114) and under the infinitesimal asymptotic
approach X2 ∼ ε, the following holds:

Y1 =
m
|a + c| εXm−1

1 (1− X1), (117)

in the approach X1 ↗ 1:
Y1 ∼ B(ε)(1− X1), (118)

for a sufficiently small B(ε). Equivalently, in the asymptotic approximation:

( f m)′ + B f = 0 → f (m f m−2 f ′ + B) = 0, (119)
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where ′ = d
dξ . This last equation has the solution:

f (ξ) = C(α− Bξ)
1

m−1 , (120)

where C =

(
m− 1

m

) 1
m− 1 and α > 0. Note that the growing TW is obtained replacing

(−ξ) with the symmetric (ξ). This is a meaningful result that expresses the behaviour of the

invaded species (∼ ξ

1
m− 1 ) in the proximity of the critical point.

The same process shall be repeated for the manifold M1 under the flow (101):

X′2 =
1
m

X1−m
2 Y2 ; Y′2 = X2 − (a + c)

1
m

X1−m
2 Y2, (121)

such that in the phase plane (X2, Y2):

dY2

dX2
= − a + c

m
+ mXm

2 Y−1
2 = G(a, c, X2, Y2), (122)

where 0 < X2 < 1 ; Y2 < 0.
In the same manner, the existence of a convergent trajectory is shown based on a

topological argument and the continuity of G. For (a + c) > 0, dY2/dX2 < 0, while, when
(a + c) < 0 with |a + c| >> 1, dY2/dX2 > 0. Given the continuity of G, a critical trajectory
is given:

− a + c
m

+ mXm
2 Y−1

2 = G(a, c, X2, Y2) = 0, (123)

such that

Y2 = − m2

|a + c|X
m
2 → (gm)′ = − m2

|a + c| g
m. (124)

The last equation can be solved with standard means:

g(ξ) = D e−
m
|a+c| ξ , (125)

for D > 0.
The positivity condition for f (120) permits conclusions about some regularity results

in the quasilinear parabolic operator (see Section 3). In addition, the species g verifies

g→ ε→ 0+ in BT
R = BR(x0.R)× [T − ε, T + ε], (126)

for T >> 1, which means the existence of a convergent tail in BT
R towards the null condition

in v. The next objective is to show the existence of finite propagation in the invaded
species v.

Theorem 6. Given m > 2, a finite propagating support exists whenever:

f → ε→ 0+ in BT
R = BR(x0.R)× [T − ε, T + ε], (127)

T > 0.

Proof. Firstly, assume the pressure variable w:

w =
m

m− 1
vm−1, (128)
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so that the equation for v in (2) reads:

wt = |∇w|2 + (m− 1)w∆w + c · ∇w +
m− 1

m
w− (

m− 1
m

)
m−1

m w
m−1

m , (129)

where w→ 0+, then:
wt ≥ |∇w|2 + c · ∇w. (130)

A solution to a similar equation has been provided in [27]. Consider the following
function in the search of a maximal solution:

W(x, t) = a
(

bt + r− 1
n

)
+

, r = |x|, n ∈ N. (131)

Both a and b > 0 are constants to be determined. In particular, for 0 ≤ τ ≤ 1, impose:

bτ =
1

2n
. (132)

Under this condition:

W(x, t) ≡ 0 f or r <
1

2n
and 0 ≤ t ≤ τ. (133)

Any solution to Equation (130) is bounded as per Theorem 1, then:

v(x, t) ≤ K1 f or x ∈ R, 0 ≤ t ≤ τ and K1(p, ‖u0‖∞). (134)

The intention is to make W(x, t) as a maximal solution:

W(x, t) ≥ v(x, t), (135)

so that

a
(

bt + r− 1
n

)
+
≥ K1. (136)

Select any r > 1
n , for example r = 2

n . Thus, for t = 0:

a
(

2
n
− 1

n

)
+
≥ K1, a ≥ nK1. (137)

Note that:
W(x, t) ≥ v(x, t), (138)

in r = 2
n and 0 ≤ t ≤ τ. The value of b shall be chosen in such a way that W(x, t) is a

supersolution in 0 < r < 2
n , 0 ≤ t ≤ τ:

Wt ≥ |∇W|2 + c · ∇W, (139)

and considering that:
Wt = ab, Wr = a, (140)

the following value for b is obtained:

b ≥ a + c. (141)

For the values of a and b in expressions (137) and (141), respectively, the function
W(x, t) is a supersolution locally:

W(x, t) ≥ w(x, t), 0 < |x| < 2
n

, 0 ≤ t ≤ τ. (142)
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The inequality (142) permits concluding that any local supersolution satisfies the null
criteria in BT

R; then, any minimal solution w(x, t) satisfies such null criteria in BT
R.

The expression (125) provides the characteristic profile in relation to the diffusion front
(note the parameter m) and the advection. Once the invaded species starts the desertion in
the direction of c, it follows a curve in (x, t) given by (125). The invasive species movement
concentrates in the same trajectory to reduce the invaded population that follows an
exponential decay. Furthermore, the existence of a finite propagation suggests that, during
the desertion, the diffusion is still relevant in the proximity of the null solution (i.e., the
invaded tail). This can be interpreted as the existence of a random movement of invaded
species in the tail where the invasive species influence is negligible.

7. Conclusions

The proposed problem P (2) has been discussed stressing aspects related with existence,
uniqueness, behaviour of minimal and maximal solutions and Travelling Waves supported
by the geometric perturbation theory. In addition, the finite speed of propagation, induced
by the porous medium diffusion, has been shown and a characterization of such property
has been explored. The propagation features of the species v when approaching the null
solution have been shown. To this end, an exponential decreasing tail in the TW domain
has been proved to exist. The invaded species trajectory, to escape from the invasive
one, is given by the TW solution mentioned. Even when the invaded desertion is mainly
governed by the advection, the nonlinear diffusion still acts in the tail leading to a finite
speed propagating front.
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