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ABSTRACT 27 

A bienzymatic system containing a N-succinylamino acid racemase from Geobacillus 28 

kaustophilus CECT4264 (GkNSAAR) and of L-N-carbamoylase from Geobacillus 29 

stearothermophilus CECT43 (BsLcar) has been developed. This biocatalyst was able to 30 

produced optically pure natural and non-natural L-amino acids form racemic mixtures 31 

of N-acetyl, N-formyl- and N-carbamoyl-amino acids by dynamic kinetic resolution, 32 

showing the fastest conversion on the N-formyl-amino acids followed by N-carbamoyl 33 

and N-acetyl ones. Metal ion cobalt was essential for the activity of the biocatalyst. Co
2+

 34 

was added during protein induction or preincubated with the recombinant enzymes 35 

before reaction or directly added into this, and the system was optimally active when 36 

Co
2+ 

was added directly to the reaction. Optimum reaction conditions for the biocatalyst 37 

were pH 8 and 45 and 65ºC for N-formyl- and N-carbamoyl-amino acids, respectively. 38 

The bienzymatic system was equally efficient to convert aromatic and aliphatic 39 

substituents but always faster N-formyl than N-carbamoyl-amino acids. This new 40 

Amidohydrolase Process enables the natural and unnatural L-amino acids production 41 

from broad substrate spectrum. 42 

 43 
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INTRODUCTION 52 

Optically pure natural and non-natural L-amino acids are of considerable 53 

economic importance because of the broad spectrum of their industrial applications. The 54 

former, proteinogenic amino acids are building block of life, used in human nutrition 55 

and health or as additives, flavour enhancers and sweeteners (5). Additionally, non-56 

natural L-amino acids are in increasing demand as valuable intermediates in the 57 

pharmaceutical industry. By way of example, L-homophenylalanine is a precursor for 58 

the preparation of agniotensin-converting enzyme (ACE) and rennin inhibitors, such as 59 

enalapril, lisinopril, quinapril, ramipril, trandolapril and benazepril, among others (10). 60 

L-α-aminobutyric acid (L-ABA) is an intermediate of ophthalmate, a sensitive indicator 61 

of hepatic glutathione (GSH) depletion, and designed as new biomarker for oxidative 62 

stress (18).  63 

 64 

Biocatalytic methods based on chemo-enzymatic processes have been described 65 

for optically pure amino acid production. Some of these methods are the hydantoinase 66 

(6), amidase (2) and acylase (14) processes. The “Hydantoinase Process” is based on the 67 

dynamic kinetic resolution of D,L-5-monosubstituted hydantoins using an inexpensive 68 

and environmental friendly enzymatic method (1). The chirality of the amino acid 69 

obtained depends on the stereospecificity of the last enzyme in the reaction cascade (N-70 

carbamoyl-L-amino-acid amidohydrolases, also known as L-N-carbamoylases) (13).  In 71 

the “Acylase process” a N-acylamino acid racemase (NAAAR) together with a L-72 

aminoacylase can produce a final yield of 99% optically pure amino acid in one step 73 

from racemic mixtures of N-acetylamino acids, by enzymatic racemization of the non-74 

hydrolysed N-acetyl-L-amino acid (21).  75 



Our group has recently demonstrated the substrate promiscuity of a recombinant 76 

N-succinylamino acid racemase from Geobacillus kaustophilus CECT4264 77 

(GkNSAAR) (15) and of L-N-carbamoylase from Geobacillus stearothermophilus 78 

CECT43 (BsLcar) (16). Both enzymes allowed the racemization or hydrolysis of N-79 

acetyl-, N-formyl- and N-carbamoyl-amino acids. The aim of this work is to develop a 80 

biocatalyst joining both enzymes as a bienzymatic system for natural and non-natural 81 

optically pure L-amino acids production. This Amidohydrolase Process will be able to 82 

convert racemic mixtures of N-acetyl-, N-carbamoyl- and N-formyl-amino acids into L-83 

amino acids, with 100% of yield, by dynamic kinetic resolution. 84 

 85 

 86 
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MATERIALS AND METHODS 101 

General protocols and reagents.  102 

Standard methods were used for the cloning and expression of the different 103 

genes (3,17). Restriction enzymes, T4 DNA ligase and the thermostable Pwo 104 

polymerase together with primers for PCR were purchased from Roche Diagnostic S.L. 105 

(Barcelona, Spain). Racemic mixtures and optically pure D- and L-amino acids were 106 

purchased from Sigma Aldrich Quimica S.A. (Madrid, Spain). N-acetyl D- and L-107 

methionine were purchased from Sigma-Aldrich (Madrid, Spain). The N-carbamoyl- 108 

and N-formyl-amino acids were synthesized according to previous works (4,9).  109 

 110 

Plasmids and culture conditions.  111 

Two recombinant Escherichia coli BL21 strains were grown in Luria-Bertani 112 

medium (LB) (1% tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7.2) as previously 113 

described (15,11). One harboured pJAVI80 containing L-N-carbamoylase gene from 114 

Geobacillus stearothermophilus CECT43 (Bslcar) and the other harboured pJPD25 115 

containing N-succinylamino acid racemase gene (nsaar) from Geobacillus kaustophilus 116 

CECT4264 (Gknsaar). Both genes were taken from the above mentioned plasmids and 117 

cloned in the rhamnose-inducible expression with His-tag pJOE4036.1 (20); 118 

Altenbuchner, pers. communication), to increase the overexpression of the genes in E. 119 

coli BL21 strains (19). The development of the plasmid pJAVI80rha is described in 120 

(12). 121 

The pJPD25rha construction was made by PCR amplification of Gknsaar gene 122 

(1128 bp; Genbank accession no. EU427322) from the recombinant plasmid pJPD25 123 

that was used as template (16). The PCR primers were 5´-124 

AGAAAGGGGAGAGCTCATGGCGATCAACA-3´ (the SacI site in italics) and 5´- 125 



GGATCCTGCCGTCGCCGTACGATGAAACA-3´ (the BamHI site in italics). 126 

Amplifications were performed in a Applied Biosystems thermal cycler 2720 127 

programmed as follows: initial denaturation at 94ºC for 5 min; 30 sec at 94ºC for 128 

denaturing, 30 sec at 57ºC for annealing, 1 min at 72ºC for synthesis, repeated 35 129 

cycles; and a final extension step of 5 min at 72ºC. The PCR products were purified 130 

from agarose gel using E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek, Inc., USA), 131 

treated with the corresponding enzymes and then ligated into pJOE4036.1 which was 132 

cut with the same enzymes to create the plasmid pJPD25rha.  133 

After cloning, the plasmid was transferred to E. coli DH5α to verify the presence 134 

of the insert. The sequence was analyzed at least twice using standard T3 and T7 135 

primers. Sequencing analysis was carried out using the dye dideoxy nucleotide 136 

sequencing method in an ABI 377 DNA Sequencer (Applied Biosystems). 137 

 138 

Expression of Bslcar and Gknsaar genes.  139 

The transformants in BL21 strain (BL21pJAVI80rha and BL21pJPD25rha) were 140 

grown in LB medium supplemented with 100 µg ml
-1

 of ampicillin. The expression 141 

protocol was the same both transformants. A single colony was transferred into 10 ml of 142 

LB medium with ampicillin at the above-mentioned concentration in a 100 ml flask. 143 

This culture was incubated overnight at 37°C with shaking. In a 2 l flask 500 ml of LB 144 

with the appropriate concentration of ampicillin was inoculated with 5 ml of the 145 

overnight culture. After 2 h of incubation at 37°C with vigorous shaking, the OD600 of 146 

the resulting culture was 0.3-0.5. For expression induction of the lcar and nsaar genes, 147 

L-rhamnose (Prolabo, VWR) was added to a final concentration of 0.2 % (w/v) and the 148 

culture was incubated at 32°C for an additional 6 hours. The cells were collected by 149 

centrifugation (Beckman JA2-21, 7,000 g, 4°C, 10 min) and stored at -20ºC. The 150 



freezed pellet was washed twice and resuspended in 50 ml wash buffer (300 mM NaCl, 151 

20 mM imidazole, 50 mM sodium phosphate; pH 7.0). The cell walls were disrupted in 152 

ice by sonication using a UP 200 S Ultrasonic Processor (Dr. Hielscher GmbH, 153 

Germany) for 6 periods of 60 s, pulse mode 0.5 and sonic power 60%. The pellet was 154 

precipitated by centrifugation (Beckman JA2-21, 10,000 g, 4°C, 20 min) and discarded. 155 

The supernatant was applied to a column with TALON
TM

 metal affinity resin 156 

(CLONTECH Laboratories, Inc., Nucliber, Madrid, Spain) and then washed three or 157 

four times with wash buffer. After washing, BsLcar and GkNSAAR were eluted with 158 

elution buffer (100 mM NaCl, 150 mM imidazole, 2 mM Tris, pH 8.0). The purified 159 

enzymes were dialysed against 0.1 M borate/HCl pH 8.0 and stored at -20ºC until use.  160 

 161 

Conversion assay.  162 

Standard enzymatic reaction was carried out with the purified BsLcar and 163 

GkNSAAR enzymes (at a final concentration of 3.1 µM and 8.1 µM, respectively) in 164 

presence of CoCl2 (final concentration of 1 mM) together with N-derivate of D,L-165 

methionine as substrate (15 mM) dissolved in 100 mM borate/HCl (pH 8.0) in 390 µl 166 

reaction volume. The reaction mixture was incubated at 65ºC and 60 min for N-167 

carbamoyl-D,L-methionine conversion and 15 min at 45ºC for N-formyl-D,L-168 

methionine one. For N-acetyl-D,L-methionine conversion final concentration of BsLcar 169 

and GkNSAAR enzymes was 35.64 µM and 73.49 µM, respectively, with a reaction 170 

time of 240 min at 65ºC. The reactions were stopped by addition of 10 times the 171 

reaction volume of 1% H3PO4. 172 

After centrifuging, the resulting supernatants were analysed by high 173 

performance liquid chromatography (HPLC). The HPLC system (LC2000Plus HPLC 174 

System, Jasco, Madrid, Spain) equipped with a Luna C18 column (4.6 × 250 mm, 175 



Phenomenex) was used to detect N-acetyl, N-formyl and N-carbamoyl-D,L-methionine 176 

and L-methionine. The mobile phase was methanol/phosphoric acid (20 mM, pH 3.2) 177 

(vol/vol, 20:80), pumped at a flow rate of 0.80 ml min
-1

 and measured at 200 nm. 178 

Substrate specificity studies were performed with each different N-formyl and 179 

N-carbamoyl-amino acid dissolved in 100 mM borate/HCl (pH 8.0) together with the 180 

purified enzyme at the same concentration described above in presence of 1 mM CoCl2. 181 

Reactions were carried out at 45 ºC and 65ºC, and stopped by addition of 1% H3PO4. 182 

The mobile phase of the different substrates and their corresponding L-amino acids was 183 

methanol-phosphoric acid (20 mM, pH 3.2) (5:95 to 50:50 vol/vol, depending on the 184 

compound), pumped at a flow rate of 0.50 ml min
-1

. Compounds were detected with a 185 

UV detector at a wavelength of 200 nm. 186 

 187 

System characterization.  188 

Optimal temperature was evaluated from 30 to 80 ºC in 100 mM borate/HCl (pH 189 

8.0). The thermal stability of the cascade enzymatic process was measured after 0, 2, 4, 190 

6, 8, 10 and 24 hours of preincubation at temperatures from 40 to 70 ºC in 100 mM 191 

sodium borate/HCl buffer pH 8. Studies of pH were assayed in several buffers at pH 5.5 192 

to 10.5 (sodium citrate, sodium cacodylate, borate/HCl and borate/NaOH) at a 193 

concentration of 100 mM. Enzyme assays, for optimal temperature and pH studies, were 194 

then carried out at 45 ºC for 30 min with N-formyl-D,L-methionine and 65ºC for 60 min 195 

with N-carbamoyl-D,L-methionine. 196 

 197 

 198 

 199 

 200 



RESULTS AND DISCUSSION 201 

 202 

Multisubstrate hydrolysis 203 

Recombinant BsLcar has demonstrated to hydrolyse N-acetyl and N-formyl-204 

amino acids in addition to N-carbamoyl-amino acids (16). Aditionally, GkNSAAR has 205 

shown the ability to racemize different N-acetyl and N-carbamoyl-amino acids (15). 206 

Evidenced this substrate promiscuity of both enzymes, BsLcar and GkNSAAR were 207 

combined to transform N-acetyl, N-formyl- and N-carbamoyl-amino acids into optically 208 

pure L-amino acids. The bienzymatic system was able to hydrolyse all three racemic 209 

substates into L-methionine, showing the fastest conversion on the N-formyl-amino acid 210 

followed by N-carbamoyl and N-acetyl ones (Fig. 1), for this we have named it as 211 

“Amidohydrolase Process”. These results are in accordance with those obtained for 212 

BsLcar, where the highest conversion was for N-formyl-amino acids followed by N-213 

carbamoyl- and N-acetylamino acids (16). Previous studies with GkNSAAR 214 

demonstrated that catalytic efficiency (kcat/Km) to racemize both isomers of N-acetyl- 215 

and N-carbamoyl-methionine were very similar (15), and there is no data about 216 

racemization of N-formyl-amino acids with GkNSAAR. From the present studies with 217 

de bienzymatic system and those with BsLcar and GkNSAAR separately, we can 218 

assume that BsLcar is the reponsable that N-formyl amino acids are fasted hydrolysed 219 

compared with the N-carbamoyl- and N-acetyl- ones. At last, when N-succinyl-amino 220 

acids, the natural substrates of GkNSAAR, were used as substrates for BsLcar we did 221 

not detect any activity (data not shown).           222 

 223 

 224 

 225 



Effect of enzyme ratios in the bienzymatic system 226 

 227 

Enzyme ratio plays a critical role in driving the overall reaction. Optimize the 228 

right proportion of each enzyme allows to reduce both time reaction and protein 229 

consumption. BsLcar has shown higher catalytic efficiency for the hydrolysis of these 230 

types of substrates than GkNSAAR to racemizate them (15,16).  Five different 231 

BsLcar/GkNSAAR ratios, with constant presence of BsLcar and always increasing the 232 

GkNSAAR proportion in the mixture (1:1, 1:3, 1:6, 1:12 and 1:18), were assayed to 233 

achieve maximum conversion efficiencies for L-methionine from N-formyl-D,L-234 

methionine (Figure 2). When the proportion of both enzymes was the same (ratio 1:1), 235 

the conversion was only 50% after 350 min of reaction. After increased 6, 12 and 18 236 

times GkNSAAR proportion respect BsLcar, conversion efficiencies approached nearly 237 

100%. In order to reduce GkNSAAR consumption 1:6 ratio was selected as the best for 238 

biocatalytic transformation (Fig. 2). 239 

 240 

Cobalt effect in the bienzymatic system 241 

BsLcar and GkNSAAR have been described as metalloenzymes and for both 242 

enzymes Co
++

 as the best cofactor (15,16).  For GkNSAAR it is not necessary a 243 

preincubation with the metal ion for hours and the Co
++

 is adding directly to the reaction 244 

as a component (15). However, our previous studies for BsLcar were made with 245 

preincubation with Co
++

 at 4ºC (16). In order to balance the way to obtain the active 246 

protein by metal ion, two strategies were developed: a) compare the BsLcar activity 247 

after preincubation with Co
++

 after adding the metal ion directly in the reaction, in order 248 

to avoid the preincubation, and b) include Co
++

 in the grow medium to obtain 249 

recombinant enzymes including active avoiding to add the metal ion in the reaction. 250 



To evaluate the first strategy, BsLcar was incubated at 4ºC for 60 min with 1 251 

mM Co
++

 to enhance the activity. However, there was no activity difference between 252 

preincubated BsLcar and when the metal ion was added directly to the reaction (data not 253 

shown). Thus, to activate the enzymes is enough adding Co
++

 in the reaction directly, 254 

avoiding time consuming in enzyme preincubation.   255 

The second strategy tried to avoid adding the cobalt in the reaction by including 256 

this in the induction step. For this, BL21 pJAVI80rha and BL21 pJPD25rha were 257 

induced as described in materials and methods, but including Cl2Co 0.2 mM at the end 258 

concentration. BsLcar activity was the same for both BsLcar overexpresed in a medium 259 

supplemented with Co
++

 and that one induced without metal ion but added directly to 260 

the reaction (Fig. 3A). In opposite, GkNSAAR was not active at all when the enzyme 261 

was overexpresed in a medium supplemented with Co
++

 (Fig. 3B), restoring the activity 262 

after adding directly Cl2Co 1mM to the reaction mixture. Additionally, two effects were 263 

detected when Co
++

 was included in the cells grow medium: a) a toxic effect in bacterial 264 

cells decreasing the number recombinant cells produced during the induction, 265 

consequently the purified protein yield drastically dropred, and b) substantial 266 

insolubility of the recombinant enzymes produced by cells that accumulate the Co
++

 267 

during the grow and induction. Thus, BsLcar could be concentrate up to 20 mg/ml if the 268 

cells were grown without Co
++

 and 7.7 mg/ml in presence of the metal ion. Similar 269 

phenomenon was detected for GkNSAAR, where the solubility down from 17 to 9.5 270 

mg/ml, without and with metal ion, respectively. All these studies ended in directly 271 

addition of Co
++

 in the reaction mixture. 272 

For determinate the optimum Co
++

 concentration in the reaction, Cl2Co from 0 to 273 

6mM was added to the reaction (Fig. 4). In absence of cobalt the bienzymatic system 274 

only transformed 50% of the substrate in optically pure L-amino acid. This result agrees 275 



with those that demonstrated BsLcar activity with no cobalt in the reaction (16), and in 276 

the bienzymatic system this activity let the hydrolysis of the L-isome of the racemic 277 

formyl-methionine used as substrate. However, GkNSAAR was previously described as 278 

inactive without cobalt in reaction (15), and thus in the bienzymatic system the enzyme 279 

can not racemize the non-hydrolysed by BsLcar D-isomer. When the metal ion was 280 

presented in the reaction the conversion was 100% in the same time (Fig. 4) with no 281 

noticeable inhibition at higher cobalt concentrations (6 mM). Optimal conversion by 282 

bienzimatic system was detected at 0.25 mM of Co2+, and from now this is metak ion 283 

concentration used in standard reaction.  284 

 285 

pH and temperature effect in the bienzymatic system 286 

As we have described above the bienzymatic system transformed N-formyl, N-287 

carbamoyl- and N-acetyl-amino acids into optically pure L-amino acids, but those latter 288 

very much slowly. For this reason the conversion reaction was optimized for the two 289 

former. Thus, L-methionine production from N-formyl and N-carbamoyl-methionine 290 

was evaluated at different pHs and temperatures. Optimal pH to obtain the maximum 291 

conversion efficiency of the system for both substrates was 8 (Fig. 5). This pH value is 292 

the same that obtained for GkNSAAR (15) and slightly higher than for BsLcar (16) with 293 

pH 7.5. BsLcar showed 95% of activity at pH 8, but GkNSAAR activity decreased until 294 

80% at pH 7.5 (15,16), confirming pH 8 as the optimal for the bienzymatic system. The 295 

temperature activity profile of the bienzymatic system for the two different substrates 296 

was evaluated at different temperatures (Fig. 6). Maximum conversion activity was 297 

different for N-carbamoyl- and N-formyl-methionine with 65 and 45ºC, respectively.  298 

The thermal stability of the cascade enzymatic process was measured after 0, 2, 299 

4, 6, 8, 10 and 24 hours of preincubation at temperatures from 40 to 70 ºC in 100 mM 300 



sodium borate/HCl buffer pH 8. The bienzymatic system showed 100% of activity after 301 

24 hours of preincubation at 45ºC, down until 70 and 60% after 24 hours at 50 and 302 

60ºC, respectively (Fig. 7).  303 

 304 

3.5. Substrate conversion to L-amino acid by the bienzymatic system 305 

After optimized the bienzymatic system conversion reaction from N-formyl and 306 

N-carbamoyl-amino acid to optically pure L-amino acid, this was evaluated for different 307 

substrates (Fig. 8). A previous work demonstrated the ability to produce L-308 

homophenylalanine from racemic mixtures of N-carbamoyl- D,L-homophenylalanine by 309 

using a NSAAR from Deinococcus radiodurans and L-N-carbamoylase from Bacillus 310 

kaustophilus in a recombinant E. coli whole cell system, but not other L-amino acids 311 

(8). However, and to our knowledge, this is the first work to report a system able to 312 

convert, not only racemic mixtures of N-carbamoyl-amino acids, but also N-formyl-313 

amino acids into optically pure L-amino acids. Following the results, the biocatalytic 314 

process converted more efficiently N-formyl than N-carbamoyl-amino acids into natural 315 

and unnatural L-amino acids (Fig. 8). The bienzymatic system was equally efficient to 316 

convert aromatic and aliphatic substituents. The highest initial reaction rate has been for 317 

the unique natural L-amino acid used as control in this work, L-methionine, with 0.6377 318 

and 0.1581 U/mg protein from N-formyl and N-carbamoyl-methionine, respectively. 319 

The substrates hydrolyzed most slowly were L-aminobutyric acid (L-ABA) and L-320 

phenylglycine, with aliphatic and aromatic substituents, respectively. However, this 321 

enzymatic method using racemic substrates is more efficient than the previously 322 

described for L-ABA production from optically pure L-threonine and L-aspartic acid in 323 

a whole cell biotransformation using recombinant E. coli cells expressing cloned genes 324 

for threonine deaminase, aromatic aminotransferase and acetolactate synthase (7). 325 



 326 

The behaviour of the bienzymatic system in presence of high substrate 327 

concentration in reaction is a crucial point of interest. For this reason, we have analyzed 328 

the production of optically pure L-homophenylalanine from 100 mM N-formyl-329 

homophenylalanine (Fig. 9). In spite of the low solubility of the L-amino acid, upper 330 

concentrations of 50 mM were not measurable, the total hydrolysis of the precursor 331 

(Fig. 9) and the only presence of the L-amino acid in the powder at the end of reaction 332 

by nuclear magnetic resonance (NMR) analysis (data no shown), have demonstrated the 333 

100% conversion of the substrate. The total conversion was achieved in only 24 hours 334 

using the same enzyme concentrations that at the small-scale without noticeable 335 

inhibition effect for high substrate concentration.  336 

This bienzymatic system has shown to be able to convert different racemic 337 

mixtures of substrates (N-acetyl, N-formyl- and N-carbamoyl-amino acids) in optically 338 

pure L-amino acids by dynamic kinetic resolution. This biocatalyst is a real alternative 339 

for supply non-natural L-amino acids to the Pharmaceutical Industry.     340 
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Figure 1.- Optically pure L-methionine formation from N-formyl- (●), N-carbamoyl- (○) 437 

and N-acetyl-methionine (▼) by using the Bienzymatic System formed by BsLcar and 438 

GkNSAAR. Activity measures were performed using standard enzyme assay and in 439 

triplicate (see Material and Methods). 440 
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Figure 2.- Optically pure L-methionine formation from N-formyl-methionine by using 473 

the Bienzymatic System with different BsLcar and GkNAAAR ratios. Activity 474 

measures were performed using standard enzyme assay and in triplicate (see Material 475 

and Methods). 476 
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Figure 3.- Cobalt effect on BsLcar (A) and GkNSAAR (B). BsLcar activity was 524 

measured using N-formyl-D,L-methionine as substrate and the assays were performed 525 

in triplicate as described in  (Pozo-Dengra, 2010). GkNSAAR activity was measured as 526 

accomplished reaction together BsLcar, using N-formyl-D,L-methionine as substrate 527 

and the assays were performed in triplicate as described in Material and Methods in 528 

presence of five times higher concentration of BsLcar. (●) Recombinant enzyme 529 

induced without Co
++

 and reaction assay without Co
++

, (○) recombinant enzyme 530 

induced without Co
++

 and reaction assay with Co
++

, (▼) recombinant enzyme induced 531 

with Co
++

 and reaction assay without Co
++

 and (∆) recombinant enzyme induced with 532 

Co
++

 and reaction assay with Co
++

. 533 
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Figure 4.- Cobalt effect on Bienzymatic System after adding several concentrations of 555 

metal ion in the reaction mixture. Reactions were made using N-formyl-D,L-methionine 556 

as substrate and the assays were performed in triplicate as described in Material and 557 

Methods with a protein concentration of 13.81 µM for GkNSAAR and 2.21 µM for 558 

BsLcar. 559 
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Figure 5. Effect of pH on N-carbamoyl- (A) and N-formyl-D,L-methionine (B) 612 

conversion into L-methionine. Studies of pH were assayed in several buffers at pH 5.5 613 

to 10.5 (sodium citrate (●), sodium cacodylate (○), borate/HCl (▼) and borate/NaOH 614 

(∆)) at a concentration of 100 mM. Enzyme assays were performed in triplicate as 615 

described in Material and Methods. 616 
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Figure 6. Effect of temperature on N-carbamoyl- (A) and N-formyl-D,L-methionine (B) 654 

conversion into L-methionine. Optimal temperature was evaluated from 30 to 80 ºC in 655 

100 mM borate/HCl (pH 8.0). Enzyme assays were performed in triplicate as described 656 

in Material and Methods. 657 
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Figure 7. Thermal stability effect on L-methionine production from D,L-formyl 684 

methionine after different hours of preincubation at temperatures from 40 to 70 ºC in 685 

100 mM sodium borate/HCl buffer pH 8. Thermal stability was evaluated with standard 686 

assays performed in triplicate as described in Material and Methods. 687 
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Figure 8. Initial reaction rates for the production of different optically pure L-amino 725 

acids from D,L-formyl- and D,L-carbamoyl-amino acids. Enzyme assays were 726 

performed in triplicate as described in Material and Methods. 727 
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Figure 9. Profile of L-homophenylalanine production from 100 mM N-formyl-768 

homophenylalanine. L-amino acid at higher concentration of 50 mM is insoluble, but 769 

after 24h of reaction the collected powder is only L-homophenylalanine (data checked 770 

by NMR). Enzyme assays were performed in triplicate as described in Material and 771 

Methods. 772 
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