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Background and objective: Connectivity studies make it possible to identify alterations in brain connec-
tions and to associate these pathologies with different neurological disorders. However, a clinical test
is necessary to obtain information about the state of the brain. Electroencephalograms (EEGs) provide
this information in addition to being tests with other benefits for the patient (non-invasive, low-cost,
high reproducibility). Graph theory can be used to represent both the anatomical and functional connec-
tions of the brain by means of connectivity measures. The procedure of transforming an EEG into a graph
can be slightly tedious for researchers, especially when implementing different connectivity measures.
Methods: The open-source Python library EEGraph automatically performs the modeling of an EEG
through a graph, providing its matrix and visual representation. It recognizes various EEG input formats,
identifying the number of electrodes and the location of each electrode in the brain. Moreover, it allows
the user to choose from 12 connectivity measures to produce the graph from the EEG, with great flexi-
bility to define specific parameters to adapt them to each study, including EEG time-windows segmen-
tation and separation in frequency bands.
Results: The EEGraph library is developed as a tool, for researchers and clinical specialists in the field of
neuroscience, that provides direct information on the connectivity of the brain from electroencephalog-
raphy signals. Its documentation and source code are available at https://github.com/ufvceiec/EEGRAPH.
It can be installed from the Python Package Index using pip install EEGRAPH.
Conclusions: The EEGraph library was built aiming to facilitate the development of connectivity studies
based on the modeling of electroencephalography tests through graphs. It includes a wide range of con-
nectivity measures, which, together with the multiple output options, make EEGraph an easy to use and
powerful tool with direct applications in both the clinical and neuroscience research fields.

� 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Connectivity studies are of great importance within the field of
neuroscience as they allow the evaluation of both the anatomical
and functional organization of the brain. These studies are carried
out by identifying and classifying the patterns produced by the
connections between the different cerebral regions [1]. To obtain
and represent precise information about the state of brain connec-
tions, a series of neurobiologically significant measures, sensitive
to connectivity changes, are considered. Some of the most used
measures can be found in [1]. The study of the connections (both
anatomical and functional) of the different brain regions makes it
possible to identify alterations in the connectivity patterns and
to relate these alterations with anomalies or neuropsychiatric dis-
orders [2–5]. To carry out this type of study, it is necessary to have
both a clinical test that contains the information on the state of the
brain and a methodology that effectively represents the connection
between the brain regions.

Graph theory offers a great way to represent brain connectivity
due to its potential to model networks and their connections. To do
this, both the nodes and the edges of the graph must be defined
according to the considered problem. [6] is a review of the different
procedures to define the nodes of the graph according to the type of
study that the user wants to carry out. One of the methodologies
commonly used consists of relating the nodes of the graph with dif-
ferent regions of the brain, so that the edges determine the connec-
tions between them. Furthermore, the use of graph theory allows
obtaining the information of the connections in two ways, visual
and matrix. The visual representation of the graph can help clinical
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staff in their daily practice, whereas its matrix representation pro-
vides information to the researchers as data structures with which
to work more comfortably and efficiently in their investigations
without losing the information contained in the graph [7]. How-
ever, to apply graph theory it becomes necessary to perform a clin-
ical test that extracts the information of the patient’s brain.

Electroencephalography is a clinical test that is responsible for
recording the electric field that is produced by the activity of pyra-
midal neurons in the brain, providing a record of the current state
of the brain [8]. An electroencephalogram (EEG) is made up of a set
of signals, each one associated with each of the scalp electrodes
contained in the electroencephalography headset. Therefore, each
signal is a time series representing a specific location in the
patient’s brain. Among the benefits of this test, it may be high-
lighted that it is non-invasive for the patient, has a high temporal
resolution, and is low-cost compared to other types of techniques
commonly used in the field of neurology, such as single photon
emission computed tomography (SPECT), M-iodobenzyl-
guanidine cardiac scintiscan (MIBG), Magnetic Resonance Imaging
(MRI), Computed Tomography (CT scan) [9]. However, the use of
this test is not widespread in routine clinical practice due to the
complexity of extracting information from these signals through
visual analysis, especially in those pathologies that do not present
abrupt changes in the state of the patient and thus do not show
visual disturbances on EEG [10].

Although graph theory has been previously considered in con-
nectivity studies, the process of constructing graphs from different
connectivity measures is still intricate and it is not extended in the
clinical practice. Furthermore, tests used to obtain information
from the brain are often expensive and invasive for the patient.
Even though EEGs are harmless, they are difficult to analyze, and
it has not been until recent years that their use in connectivity
analysis has grown [11]. These problems reduce the amount of
data available, limiting this type of studies and affecting current
research. In this work, we present EEGraph, an open-source Python
library that provides an EEG representation by means of a graph. It
has been built with the main aim of providing a tool that facilites
the development of connectivity studies. In order to evaluate con-
nectivity, EEGraph has 12 of the most used measurements in the
bibliography [12–16], which allows addressing studies related to
both the frequency spectrum and the time domain of the EEG. This
wide variety of measures chosen to evaluate connectivity, together
with the flexibility offered by the library to define the parameters
involved, provide the user with a powerful tool that facilitates the
investigation in the area of neuroscience. The output can be
obtained as a visual representation, through an image that facili-
tates a rapid clinical application, and as a matrix representation,
through easily manipulable data structures for quantitative analy-
sis. Both representations provide a possible application in the clin-
ical field and a useful tool for neuroscience research field.
2. Methods

The EEGraph library (whose code can be found in GitHub1) is a
tool that offers the user a fast and efficient way to carry out different
connectivity studies from EEGs. It uses graph theory to represent
brain connections, identifying the nodes of the graph with the elec-
trodes contained in the electroencephalography headset, preserving
their spatial distribution. The connections between the nodes, that
is, the graph edges, are determined by the different connectivity
measures available in the library. In this section, we make a brief
review of the libraries that deal with graphs and EEGs, and we sum-
marize how the library works and how these concepts are defined.
1 https://github.com/ufvceiec/EEGRAPH.
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2.1. State of the art

There are Python libraries that either focus on EEG processing,
or are dedicated to graph handling, but, to the best of our knowl-
edge, no library exists covering both aspects, i.e., modeling EEG
as graphs. This fact highlights the need for a user-friendly and ver-
satile tool that connects both approaches. A brief overview of some
of these two groups of Python libraries is provided below.

Within the libraries that carry out EEG processing, eeglib [17] is
a tool dedicated to EEG feature extraction (through 8 methods),
besides including other procedures for signal analysis. However,
it does not provide any visual representation of the output. The
package Mne [18] is designed for the exploration, visualization
and analysis of neurophysiological data, EEG included. In particu-
lar, it supports 6 connectivity measures and their variations.
Although this library allows a great flexibility for the choice of cer-
tain parameters, it is rather complex and not very intuitive, and it
does not build the associated graph. Finally, SCoT [19] is a package
dedicated to source decomposition and connectivity estimation in
EEG from spectral measures such as Coherence, Partial Directed
Coherence, Directed Transfer Function and variations.

Within the Python libraries focused on graphhandling,NetworkX
[20] allows the creation, manipulation, analysis and visualization of
graphs, digraphs, and multigraphs. The python libraries spektral
[21] and StellarGraph2 handle graph-like data-structures for their
use in deep learning and machine learning models, respectively.

Hence, it can be appreciated how EEGraph covers the existing
gap in EEG modeling through graphs by serving as a link between
these two fields. Moreover, it allows a large number of different
connectivity measures as well as great flexibility for the parame-
ters in a intuitive environment for the user.
2.2. Nodes construction

Withing the input options, EEGraph admits various EEG for-
mats, including those associated with the output formats of differ-
ent electroencephalography devices and pre-processing tools. Once
the file containing the EEG is read by the library, EEGraph automat-
ically identifies the number of electrodes that it contains, labels
each of the signals with the node that corresponds to it, and places
each node in the appropriate position with respect to the EEG
headset to represent the graph. Building the graph takes into
account that smaller mounting systems are contained in larger
mounting structures [22]. For this reason, a dictionary with 333-
electrode positions has been built and a mesh has been generated
where these electrodes with their corresponding labels have been
placed in order to later identify the positions of the graph nodes. It
has been considered that there are electrodes that can be referred
to with more than one label, so the different labeling options have
also been included (T3 ¼ T7; T4 ¼ T8; T5 ¼ P7; T6 ¼ P6). The result
at this point is a graph without edges, which depends on the con-
nectivity measure chosen by the user.
2.3. Edges construction

To select the measures implemented in the library, a biblio-
graphic study was carried out to determine which were the most
used ones [12–16]. As a result, EEGraph implements a total of 12
connectivitymeasures,which are detailed in Section 3.Within these
measures, Power Spectrum, Spectral Entropy and Shannon Entropy
extract information from a single channel of EEG, while the remain-
ing ones provide information about the relationship between pairs
of electrodes. Measurements relating pairs of electrodes provide
2 https://stellargraph.readthedocs.io/en/stable.
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an immediate relationship between the nodes of the graph. In this
way, a fully connected graph is generated where each edge has an
associated weight corresponding to the chosen connectivity mea-
sure. To facilitate the extraction of patterns, we have introduced a
threshold (which can be modified by the user) to represent only
those values that exceed this limit. The default value has been
defined based on the previous bibliography. In the case of measures
that provide information about single electrodes, it becomes neces-
sary to define a criterion that relates the nodes of the graph to estab-
lish the connections. The chosen criterion consists in fully
connecting a fixed percentage of the nodes with the higher values.
The default value for such percentage is 25%, although the user
canmodify it. In this case, since there is nomeasure associated with
the edges of the resulting graph, their associated weights are fixed
to 1:00 to indicate the existence of connections.

Electroencephalography studies can be divided mainly into two
groups: temporal domain analysis and frequency domain analysis.
Frequency analysis is carried out over different intervals or bands,
which are related to various brain functions to study specific char-
acteristics of each of them. The most representative bands are:
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz)
and gamma (30–45 Hz). The variety of connectivity measures
implemented in EEGraph allow the user to carry out both types
of studies. Those related to the temporal domain are Pearson Corre-
lation, Cross-Correlation, Corrected Cross-Correlation, Phase Lag Index
and Shannon Entropy, while the measures related to the frequency
domain are Coherence, Imaginary Coherence, Phase Locking Value,
Phase Lag Index, Weighted Phase Lag Index, Directed Transfer Func-
tion, Power Spectrum, and Spectral Entropy. For these measures,
EEGraph allows the users to choose the band or bands with which
they want to work. Moreover, some studies divide the EEG into
several segments or time windows to analyze them individually
or concatenate them to have a temporal sequence. Hence, the divi-
sion in windows has also been taken into consideration in EEGraph
and can be modified by the user.
2.4. Data visualization

The output of EEGraph is two fold. On the one hand, it provides
the visual representation of the graph, i.e., the image of the graph
with the nodes and the connections between them, which depends
on the connectivity measure chosen. Within this representation,
there are two possibilities. In case the connectivity measure pro-
vides a relationship between two nodes, the value of the measure
can be visualized approximating the cursor to the middle point of
each edge. Moreover, the width of each line depends on the associ-
ated value. In case the connectivity measure provides information
about single nodes, the values obtained are represented in the
nodes, and the edges represented show a value of 1:00 when the
cursor is approximated to their middle point, indicating that a con-
nection exists. This representation is designed to facilitate the
acquisition of information directly. On the other hand, EEGraph pro-
vides a matrix representation of the graph, which contains all the
values of the connectivity measure chosen by the user. If the EEG
has been divided into several windows, EEGraph provides both
the visual and matrix representation of the graph for each of them,
allowing the user to evaluate the temporal evolution of the brain
connections.
3. Connectivity measures theory

This section details each of the connectivity measures imple-
mented, providing their mathematical definition, and a brief inter-
pretation of their application to time series, as it is the case of the
EEG channels. The interval to which each measure belongs is also
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specified, along with the meaning of the possible results, in order
to facilitate their implementation. In addition, the default thresh-
old associated to each measure (based on bibliographic values) is
indicated, although it should be noted that these values can be
modified by the user.

3.1. Pearson correlation

Pearson correlation coefficient (C) [23] measures the linear cor-
relation between two variables, two sets of data, or two time series.
It is defined as:

Cx;y ¼ rxy

rxry
; ð1Þ

where x and y are the two time series, rxy stands for their covari-
ance, rx is the standard deviation of x, and ry is the standard devi-
ation of y. Eq. (1) provides a scalar in the range ½�1;1�, where 1
means a perfect correlation, �1 represents a perfect inverse corre-
lation, whereas 0 means that there is no correlation between x
and y. The function pearsonr within the module scipy.stats has been
used for the computation of this value. The default threshold for this
measure is 0:7.

3.2. Cross-correlation

Cross-correlation (CC) measures the similarity of two time ser-
ies as a function of the relative displacement (or lag) of one of them
with respect to the other. Its value is obtained through:

CCxyðmÞ ¼ RxyðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxxð0ÞRyyð0Þ

p ; ð2Þ

with

RxyðmÞ :¼
XN�1

j¼0

ðxj � lxÞðyj�m � lyÞ�

where x and y are the two time series, � indicates the conjugate, lx

and ly are the respective means of x and y;N denotes both the
length of x and y, which match each other since these time series
belong to the same EEG, and yj�m :¼ 0 if j�m < 0 or j�m P N.
Here m 2 Z and RxyðmÞ ¼ 0 if m 6 �N or m P N. The computation
of the value of Rxx;Ryy and Rxy has been carried out using the corre-
late function within the scipy.signal module. It should be noted that
the definition for the cross-correlation introduced in Eq. (2) is nor-
malized with respect to the zero-lag value so that it corresponds to
the Pearson correlation coefficient. Thus, for small lags its value lies
in a neighborhood of the interval ½�1;1�. To obtain a more represen-
tative value associated to the CC, the mean of the 10% of the posi-
tive lag values is calculated for each pair of time series, and a
threshold of 0:5 is applied to these measures.

3.3. Corrected Cross-Correlation

The Corrected Cross-Correlation (CCC) measures the symmetry
of the cross-correlation of two time series, x and y, with respect
to the lag (that is, the displacement of y with respect x). Its expres-
sion is given by:

CCCxyðmÞ ¼ CCxyðmÞ � CCxyð�mÞ; ð3Þ
where m represents the time lag between x and y, and CCxy is their
cross-correlation as established above. As a consequence, for the
computations in Eq. (3), the function correlatewithin the scipy.signal
module is used. Much like in the CC, to obtain a more representative
value associated to the CCC, the mean of the 10% of the lag values is
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calculated for each pair of time series, and a threshold of 0:1 is
applied to these measures.
3.4. Squared Coherence

The Squared Coherence (SC) [24] measures the relationship
between the spectrum of two time series, x and y, including, as a
consequence, leading, lagged and smoothed relationships. This
measure is defined as:

SCxyðf Þ ¼ jGxyðf Þj2
Gxxðf ÞGyyðf Þ ð4Þ

where Gxyðf Þ is the cross spectral density between x and y, and Gxxðf Þ
and Gyyðf Þ stand for the power spectral densities of x and y respec-
tively. Eq. (4) provides a series of scalars in the range ½0;1�, where 1
represents a perfect correlation in the frequency spectrum, whereas
0 means that there is no correlation between the spectrum of both
signals, x and y. The function coherence within the module scipy.sig-
nal is used for the computation of this value. Once it is obtained, its
mean in each frequency band (delta, theta, alpha, beta, and gamma)
is calculated. The default threshold for this measure is 0:65.
3.5. Imaginary Coherence

Much like the squared coherence, the Imaginary Coherence (IC)
measures the relationship between the spectrum of two time ser-
ies, x and y. However, it is less sensitive to certain external effects
compared to the real part of coherence and so compared to SC. Its
expression is given by:

ICxyðf Þ ¼ ImagðGxyðf ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxxðf ÞGyyðf Þ

p ð5Þ

where Gxyðf Þ is the cross spectral density between x and y, and Gxxðf Þ
and Gyyðf Þ stand for the power spectral densities of x and y respec-
tively. It should be noted that Eq. (5) provides a series of values in
the range ½�1;1�, whose mean is then calculated in each frequency
band (delta, theta, alpha, beta, and gamma). For the computations in
Eq. (5), the functions welch and csd within the scipy.signal module,
and the function imag within the numpy module are used. The
default threshold for this measure is 0:4.
3.6. Phase Locking Value

The Phase Locking Value (PLV) [25] measures the fluctuations in
the phase difference of two time series, x and y. Its value is
obtained through:

PLV ¼ jE½expðiD/relðtÞÞ�j ð6Þ

where D/relðtÞ is the phase difference of x and y at time t, shifted to
be in the interval ½0;2pÞ; E½�� stands for an average in times, and j � j
means module, so that for each pair of channels a single real value is
returned. According to the definition provided by Eq. (6), the PLV
belongs to the interval ½0;1�, where 1 represents synchrony between
the two time series (little fluctuations on the phase difference), and
0 the absence of synchrony (large fluctuations in the phase differ-
ence). Since the phase of the signals is obtained through the Hilbert
transform, the hilbert function from the scipy.signal module, and the
angle function within the numpy module are used. The default
threshold for this measure is 0:8. It should be noted that the imple-
mentation of the PLV in this work provides the value associated to
one or multiple bands that need to be specified.
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3.7. Phase Lag Index

The Phase Lag Index (PLI) [26] measures the changes in the sign
of the phase differences of two time series, x and y, and thus, the
relative changes in the phase of one series with respect to the
other. This measure is less sensitive to the influence of certain
sources than PLV, and its value is given by the expression:

PLI ¼ jE½signðD/ðtÞÞ�j ð7Þ
where D/ðtÞ is the phase difference of x and y at time t, shifted to be
in the interval ½�p;pÞ. The meaning of E½��; j � j and the functions
used to perform the computation of Eq. (7) are detailed in the
PLV. The PLI value obtained in Eq. (7) belongs to the interval ½0;1�,
where 1 represents a uniform relative position of the phase of x
with respect to that of y, whereas 0 reveals an equal number of
changes in the relative position of such phases. The default thresh-
old for this measure is 0:1, and it can be called either for the whole
time series with the option pli, or for one or multiple bands (that
need to be specified) with the option pli bands.

3.8. Weighted Phase Lag Index

The Weighted Phase Lag Index (WPLI) has a similar objective to
the one of the PLI, though it is less sensitive to certain external
effects compared to it. It is calculated through:

WPLI ¼ jE½ImagðGxyðf ÞÞ�j
E½jImagðGxyðf ÞÞj�

¼ jE½jImagðGxyðf ÞÞj�signðImagðGxyðf ÞÞÞ�j
E½jImagðGxyðf ÞÞj�

ð8Þ

where Gxyðf Þ is the cross spectral density between x and y; j � jmeans
module, and E½�� stands for an average in frequencies, so that for
each pair of channels a single real value is returned. The value pro-
vided by Eq. (8) lies in the interval ½0;1�. The default threshold for
this measure is 0:45, and, much like the PLV, the implementation
of the WPLI in this work provides the value associated to one or
multiple bands that need to be specified.

3.9. Directed Transfer Function

The Directed Transfer Function (DTF) [27] describes the causal
influence of a channel jon channel ifor each frequency through
the expression:

DTF2
j!iðf Þ ¼

jHijðf Þj2
Xk

m¼1

jHimðf Þj2
ð9Þ

where Hijðf Þis an element of a transfer matrix of a MVAR model
(multivariate autoregressive model). In particular, Eq. (9) consti-
tutes a normalized version of the DTF, which takes values from
0to 1, indicating a ratio between the inflow from channel j to chan-
nel i with respect to all the inflows to channel i. In this work, the
computation of the DTF is performed through the SCoT python
package, and the implementation of such a measure is associated
to one or multiple bands that need to be specified. For a every band
the mean value is considered in the frequency range associated to it.
The default threshold for this measure is 0:3.

3.10. Power Spectrum

The Power Spectrum (PS) of a time series, x, describes its distri-
bution in the frequency domain. It is calculated through:

PSðf Þ ¼ jXðf Þj2 ð10Þ
where Xðf Þ is the one-dimensional discrete Fourier Transform of x,
which is computed using the rfft function of the numpy.fft module.
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The implementation of Eq. (10) allows the user to determine the PS
for one or multiple bands (that need to be specified), and it returns
the mean value of the PS in the range of frequencies associated to
each band. In order to establish a relation between pairs of elec-
trodes, 25% of the channels with the highest values are selected
and connected in the final graph.

3.11. Shannon Entropy

The Entropy (H) or Shannon Entropy [28] measures the average
amount of information contained in a time series x. Its expression
is given by:

HðxÞ ¼ �
X

i

pðxiÞ log pðxiÞð Þ ð11Þ

where log denotes the natural logarithm, and pðxiÞ is the unnormal-
ized probability of the event xi in x. For the computations in (11),
the function entropy within the scipy.stats module is used. It should
be noted that the value obtained in Eq. (11) is not normalized, and
so it depends on the total number of occurrences, N. If H is normal-
ized by the factor logðNÞ, then the resulting value belongs to the
interval ½0;1�. The state of maximum entropy, i.e., normalized
entropy equal to 1, is obtained in equiprobable events and means
minimum information, whereas minimum entropy, i.e., HðxÞ ’ 0
represents maximum amount of information. Similar to the mea-
sure PS, 25% of the channels with the highest values are selected
and connected in the final graph. Thus, its edges do not get influ-
enced by the normalization.

3.12. Spectral Entropy

The Spectral Entropy (SE) is the Shannon entropy in the fre-
quency domain of a time series x. Hence, SE measures the amount
of information contained in its spectrum. Its expression is given by:

SEðxÞ ¼
�
Xf s=2

f¼0

pðf Þlog2 pðf Þð Þ

log2ðpsd sizeÞ ð12Þ

where log2 denotes the logarithm in base 2; f s is the sampling fre-
quency, pðf Þ stands for the normalized power spectrum density of
x estimated through the Welch method, and psd_size is the size of
the power spectral density of x. Unlike the Shannon entropy mea-
sure, the value obtained through Eq. (12) is normalized to be in
the interval ½0;1�. The complete computations are carried out using
the function spectral entropy of the python package AntroPy. Once a
single value for the SE is obtained for every channel, 25% of the
channels with the highest values are selected and connected in
the final graph.

4. Results

The EEGraph library has been developed with the main objec-
tive of creating a tool, both for researchers and clinical specialists
in the field of neuroscience, that provides direct information on
the connectivity of the brain from electroencephalography signals.
As far as we know, there is nothing implemented in this regard
with as many connectivity measures nor modeling EEGs as graphs.
Next, installation and usage specifications of EEGraph are detailed.

4.1. Package requirements

This library has been implemented in the Python programming
language and can be used in various operating systems. At the time
of submission of this article, EEGraph version is 0.1.13. The instal-
lation is done using the command ‘‘pip install EEGRAPH”. It utilizes
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the following libraries: Numpy3, a package specialized in numerical
calculation and data analysis [29], is used to perform the division in
frequency bands through the fast Fourier transform, to implement
the threshold value, and to define some operations within the com-
putation of the connectivity measures (e.g. PS); Pandas4, a library
specialized in data structure management and analysis [30], is used
both to structure the data in dataframes and to read the file with the
electrode montage specifications; Mne,5 a package for the explo-
ration, visualization and analysis of neurophysiological data [18], is
utilized to read the EEG file in the different supported formats; Net-
workX,6 a package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks [20], is used
for the graphs creation and handling; Plotly,7,8 an interactive plotting
library, is used in the implementation of the visual representation of
the graphs; Scipy,9 a library that provides mathematical tools and
algorithms [31], it is used to estimate Pearson correlation coefficient,
the cross correlation, the squared coherence, the power spectral den-
sity, the Hilbert transform for the instantaneous phase calculation,
the cross power spectral density, and the Shannon entropy, which
are crucial in the definition of some of the connectivity measures
considered (C, CC and CCC, SC, IC, PLV and PLI, WPLI, and H, respec-
tively); SCoT,10 a Python package for EEG/MEG source connectivity
estimation [19], is used for the computation of the DTF; and
AntroPy,11,12 a Python package for computing different entropy and
complexity metrics of time series, is used for the estimation of the
SE. The necessary versions of each of these libraries are specified
in the file requirements:txt of the GitHub.
4.2. Performance metrics

Some metrics that provide information about the performance
of the library, such as execution times and tested versions, are pro-
vided below.
4.3. Covered code

The Codecov13 analysis tool has been used to provide a report of
the lines of code executed in the test performed. In particular, as
shown in Table 1, 98.27% of the code inside the test folder and
85.97% of the lines of code in the library have been covered.
4.4. Compilation tests

The latest version (v 0.1.13) has passed compilation test suc-
cessfully for the following Python versions:

� Python 3.7: time – 3 min and 6 s
� Python 3.8: time – 3 min and 6 s

Total compile time is 6 min and 12 s. The tests have been per-
formed on Ubuntu 20.04 LTS Focal Fossa with the following
libraries and packages: openssl (Ubuntu package), numpy
(1.21.1), pandas (1.1.5), mne (0.22.0), networkx (2.5), plotly
(4.14.3), scipy (1.1.0), scot (0.2.1) and antropy (0.1.4).

https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/mne/
https://pypi.org/project/networkx/
https://pypi.org/project/plotly/
https://plotly.com/python/
https://pypi.org/project/scipy/
https://pypi.org/project/scot/
https://pypi.org/project/antropy/
https://raphaelvallat.com/antropy/build/html/index.html
https://about.codecov.io/


Table 1
Report of the Codecov analysis tool.

Covered Uncovered Total

Test folder 284 lines 5 lines 289 lines
Full 576 lines 94 lines 670 lines
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4.5. Performance of the functions

Fig. A.2 in Supplementary materials shows the functions that
have been executed to perform the tests (those within the file
test/tests.py). The execution time of the whole program is 23 min
(1380 s), where the executed classes are 98.45% of the execution
time.

4.6. Input data

EEGraph allows a wide variety of EEGs reading formats as input
to cover both raw and processed EEG signals. The formats admitted
with their respective extensions are: Brainvision (.vhdr), Neu-
roscan CNT (.cnt), European data format (.edf), Biosemi data format
(.bdf), General data format (.gdf), EGI simple binary (.egi), EGI MFF
format (.mff) and eXimia (.nxe). Delving into the use of the library,
to load the file associated to an EEG, hereafter, EEG file, one needs
to create a Graph-like object and then call the ‘‘load data” method
specifying the ‘‘path” parameter, which should match the location
of such file. If the EEG file does not contain the channel labels,
EEGraph offers the option of introducing an additional file through
the parameter ‘‘electrode montage path” which allows EEGraph to
label and identify each signal with its corresponding electrode.
This file must contain at least two columns, one with the number-
ing of the electrodes in the EEG file and the other with the corre-
sponding channel labels, separated by the delimiters ‘‘nsþ; ;”, or
‘‘:”. This option is disabled by default. Lastly, the ‘‘exclude” param-
eter allows the user to exclude a list of channels from the EEG file
for the subsequent analysis.

4.7. Connectivity measures parameters

Once the EEG has been loaded, the next step is choosing the
connectivity measure with which one wants to carry out the study,
defining the associated parameters. For this purpose, the user may
utilize the ‘‘modelate” method with the possibility of specifying the
value of the parameters ‘‘window size”, ‘‘connectivity”, ‘‘bands” and
‘‘threshold”. The ‘‘window size” parameter admits either an integer
number, which is the time length (in seconds) of the segments into
which the EEG is divided, or a list of integer numbers, which allow
the user to specify the limits (in seconds) of such intervals. The
parameter ‘‘connectivity” admits as input a string that specifies
the name of the connectivity measure that the user wants to use.
The specific names of these measures can be seen in detail in the
section of ‘‘Modelate Data” within the GitHub wiki. The parameter
‘‘bands” admits, as input, a list of strings, in which the user can
specify the band or bands for which they want to obtain the infor-
mation. This parameter must be specified for those measurements
that work on the EEG frequency spectrum, i.e., ‘‘squared coherence”,
‘‘imag coherence”, ‘‘power spectrum”, ‘‘spectral entropy”, ‘‘wpli”,
‘‘plv”, ‘‘pli bands”, and ‘‘dtf”. Finally, the optional parameter ‘‘thresh-
old” admits, as input, a float, and its default value can be found in
the section ‘‘Modelate Data” of the GitHub. In the case of measures
that relate pairs of electrodes, this parameter specifies a limit
above which the connections are represented. In the case of mea-
sures that provide information about single electrodes, this param-
eter represents the percentage of nodes with the higher values that
are fully connected. This percentage must be introduced divided by
100, i.e., as parts per unit.

4.8. Output data

To obtain the visual representation of the graph the user can
utilize one of the outputs provided by the ‘‘modelate” method.
The output ‘‘graphs” is a dictionary of all graphs generated from
the EEG file as NetworkX graph-like objects. Each of these objects
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contains information about the connections of the graph and the
weights of those connections that exceed the value of the parame-
ter ‘‘threshold”, which are the ones that will be represented. To
obtain the image of the graph, it is necessary to call the method ‘‘vi-
sualize”. This method requires two parameters: ‘‘graph”, which
must be a NetworkX graph-like object like the ones that made up
the dictionary ‘‘graphs” above, and ‘‘name”, a name for the graph
that the user wants to visualize. Hence, the user needs to select
the graph contained in the dictionary ‘‘graphs” that they want to
represent and introduce it as the value of the parameter ‘‘graph”.
The result of this method is a graph like the one shown in Fig. 1,
which is delivered to the user through an HTML file that is auto-
matically saved in the user’s folder with the name specified above,
and is opened in the web browser. As it can be seen in Fig. 1, there
are two display options: ‘‘Show edge markers”, which shows the
markers where the user must place the cursor to see the value of
the weight associated with that edge (or node in the case of mea-
sures that provide information about single channel), and ‘‘Hide
edge markers”, which make the markers disappear, although the
user can visualize the values of the measure in the same way. It
should be noted that the width of each edge shown in this visual
representation of the graph depends on the associated value of
the chosen measure.

Finally, to obtain the matrix representation of the graph the
user can utilize the other output of the ‘‘modelate” method. Pre-
cisely, the output ‘‘connectivity matrix” is a numpy.ndarray with
the form G� N � N, where G is the number of graphs and N is
the number of EEG electrodes or nodes of the graph. It should be
noted that ‘‘connectivity matrix” contains all the values provided
by the connectivity measure regardless of the value of the param-
eter ‘‘threshold”. Once the matrix representation is obtained
through the variable ‘‘connectivity matrix” the user may utilize it
within a Python script, or save it to a CSV file using the ‘‘savetxt”
function of the Numpy library.
4.9. Reports on the library

The library EEGraph was tested by 6 researchers who provided
an evaluation on the performance of the tool based on 6 questions.
Their responses are presented in Table A.2. The assessments of the
6 researchers agreed that EEGraph was an easy to use library and
that the documentation provided on GitHub was very useful to
facilitate the handling of the library. One of them suggested that
providing a definition of the frequency bands within the documen-
tation would add value.

Regarding the variety of input formats, two of the researchers
indicated the possibility of including additional input formats, like
numpy arrays, while the remaining four indicated that the formats
considered were sufficient and the most common ones, and appre-
ciated the compatibility with the MNE library.

All the researchers agreed that the library included a large num-
ber of connectivity measures and that they were helpful. Moreover,
even though two of the researchers did not try to modify the vari-
ables introduced by default, the remaining ones did, and they indi-
cated the utility of this adaptability and pointed out that the
functions from the tools.py file were very useful and that the code
(despite not being heavily commented) was well structured and



Fig. 1. Example of output for the method ‘‘visualize” with the display option ‘‘Show edge markers” activated.
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easy to understand, making it easy to modify it or add new
functions.

As for the output provided, two of the researchers did not com-
ment, one indicated that the graphical results were easily visual-
ized and understandable, one noted that the data provided about
EEG parameters were very useful, in addition to the other outputs,
and that although the visualization could be improved it was good
enough to extract useful information, and the remaining two
researchers focused their interest on the great potential of obtain-
ing the data in a matrix form.

Thus, we can corroborate the favorable impact of the library on
the scientific community, offering an easy to use tool, with a
detailed guide that allows the user to be guided through the library
during its different stages.
5. Discussion

Alterations in brain connectivity patterns can be associated
with different neurological pathologies or disorders. To facilitate
the study of these anomalies, we have developed EEGraph, a tool
implemented in Python that models EEGs using graphs through
the application of connectivity measures. On the one hand, EEGs
have been chosen because of their easy accessibility and benefits
for the patient. On the other hand, the graph theory has been
selected to show the connectivity patterns exhibited in the EEG.

In this paper we present the details of EEGraph. The library
allows a wide variety of EEGs reading formats as input, being able
to identify each signal of an EEG with the position of its associated
electrode in the EEG headset. It includes 12 of the most used con-
nectivity measures in the literature, which cover both spectral and
temporal features, providing the user with a great flexibility to
define specific parameters and adapt them to each study. It enables
the segmentation of the EEG in time-windows for their indepen-
dent analysis, as well as the separation of the EEG signals in their
associated frequency bands. All these characteristics offer the users
a tool with high adaptability in a programming language known to
most researchers. Furthermore, the library outputs the values of
the connectivity measure, and an image with the visual represen-
tation of this information. This allows EEGraph to be utilized both
in daily clinical practice and in neuroscience research.
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The source code together with the documentation of the library
are available online, on GitHub. We welcome feedback, requests on
new connectivity measures, and suggestions on further
implementations.

As future work, the available connectivity measures will be
expanded and the visualization of results will be improved.
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