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a b s t r a c t

The one-way relationship that goes from the term spread to recessions has been widely studied. However, 
the relationship between term spread and the business cycle, in addition to being bidirectional, is condi-
tioned by the cyclical phase itself. To demonstrate this, we have modelled the bidirectional relationship 
between term spread and the business cycle by extracting two interrelated latent Markov variables: the 
first, drawn from four activity indicators, replicates the phases of the US business cycle; the second, from 
the term spread of the yield curve, identifies two regimes: an ordinary regime (positive slope) and a flat-
tening regime. By analyzing both the transition between these regimes and forecasted probabilities, we find 
that this bidirectional relationship is not symmetrical. That is, the term spread signals a change in the 
business cycle regime while the cyclical factor only signals the beginning of the ordinary regime of the term 
spread, not its ending. To illustrate the model, we confirm the beginning of the COVID-19 recession in March 
of 2020, and the corresponding start of the ordinary regime in the term spread.
© 2022 The Author. Published by Elsevier Inc. on behalf of Board of Trustees of the University of Illinois. This 

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 
4.0/).

1. Introduction

The predictive ability of the term spread, especially to predict 
recessions, has been well established. Notable research includes that 
by Harvey (1988) who analyzes the predictive ability of the expected 
real term structure on consumption growth based on the con-
sumption-based asset pricing model, in line with Kessel (1965) and 
Fama (1986) regarding the correlation between term structure and 
the business cycle. Harvey (1989) shows how the bond market (yield 
curve measures) provides more accurate predictions of GNP growth 
than stock market variables. Stock and Watson (1989) confirm the 
importance of spreads between interest rates of private and public 
debt instruments, and the slope of the public debt yield curve, as 
variables to be included in the coincident and leading indexes. 
Estrella and Hardouvelis (1991) emphasize the link between the 
positive slope of the yield curve and a future increase in real eco-
nomic activity. This is because the slope includes information on 
factors independent of monetary policy which can be useful for 
private investors and policymakers. Dueker (1997), using probit 
models, shows the robustness of the yield curve compared to other 

variables as a predictor of recessions, result theoretically supported 
by the expectations theory for the term structure of interest rates. 
Estrella and Mishkin (1998) examine the predictive ability of the 
slope of the yield curve in US recessions with a horizon beyond two 
quarters. Dotsey (1998) also finds the spread to be a leading in-
dicator of economic activity, although its usefulness as a predictor 
diminished in the last period analyzed. Hamilton and Kim (2002)
decompose the contribution of the spread to predict GDP into the 
effect of expected changes in short-term rates and the effect of the 
term premium, and show how the cyclical behavior of interest rate 
volatility could account for these effects. Chauvet and Potter (2005)
compare forecasts of recessions provided by four specifications of 
probit models. These models consider break points that affect the 
predictive ability of the term spread on recessions. Diebold, 
Rudebusch, and Aruoba (2006) find evidence of mutual influence of 
latent variables obtained from the yield curve (level, slope, and 
curvature) and observed macroeconomic variables (real activity, 
inflation, and a monetary policy instrument). Giacomini and Rossi 
(2006) analyze the stability of the predictive relationship between 
the yield curve and output growth, a relationship which break down 
during the Burns-Miller and Volker periods, but becomes more re-
liable during the early Greenspan era. Wright (2006) estimates a 
number of probit models to forecast recessions. Models that use 
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both the level of the Federal Funds rate and the term spread provide 
better in-sample fit and out-of-sample predictive performance. Ang, 
Piazzesi, and Wei (2006), using a dynamic model for GDP and yields, 
find that the short rate surpasses the slope of the yield curve in 
forecasting GDP growth.

These studies generally use probit models where the term spread 
is an input variable with a dummy variable to signal recessions as 
the output. However, among the various modeling alternatives, 
Markov switching models might also prove effective in identifying 
the relationship between term spread and the business cycle. 
Regime switching models explicitly consider cyclical dynamics as a 
succession of expansion and recession phases. Unlike probit models, 
by means of a Markov switching model, a dating of the business 
cycle phases with a dummy variable is not imposed, but rather 
Markov switching model endogenously produces the probabilities of 
the underlying regimes of recession or expansion. Although a priori 
business cycle dating is not assumed here, dates established by the 
NBER are used as a convenient reference to validate the model. 
Another contribution of this paper is the consideration of a bidir-
ectional relationship linking term spread and business cycle. With 
the exception of Ang et al. (2006), Chauvet and Senyuz (2016) and 
Diebold et al. (2006), the works cited above only consider a one-way 
relationship between term spread and real economic activity.

In fact, a bidirectional relationship between term spread and the 
business cycle can be expected from the following rationale. The 
slope of the yield curve, or term spread, is usually positive since, for 
fixed-income assets with similar risk, long-term interest rates are 
higher than short-term rates given the time preference and risk 
aversion of buyers. With the anticipation of a recession, yield curve 
flattens and term spread diminishes, and may even become inverted, 
with short-term rates exceeding long-term rates. This inversion is 
generally explained by the expected monetary policy, which in re-
sponse to inflationary pressures, has the effect of increasing short- 
term interest rates. Once a recession begins, monetary policy often 
turns from contractive to expansive. Subsequent reduction of short- 
term interest rates causes the yield curve to recover its positive 
slope. For its part, long-term interest rates reflect expectations about 
a sequence of short-term interest rates covering a given timeframe 
and, therefore, incorporate expectations of future monetary policy, 
among other fundamental variables (Haubrich, 2020). With the ex-
pectation of a recession, long-term rates anticipate an expansionary 
monetary response and fall, contributing to the flattening of the 
yield curve before recessive periods. Contrarily, during expansionary 
phases, procyclical inflationary pressures contribute to creating the 
expectation of a restrictive monetary policy response, thus leading 
to a rise in long-term interest rates and widening term spread. This 
stylized process is subject to other variables that limit the role of the 
term spread as a predictor of the business cycle although the dy-
namics described are generally considered accurate.

Chauvet and Senyuz (2016) takes into account the bidirectional 
relationship between term spread and business cycle. Using a mul-
tivariate joint bi-factor model, they extract two latent Markov 
switching variables: one from monthly industrial production and 
another from empirical proxies for the level, slope, and curvature of 
the yield curve. Both latent factors follow an unobservable auto-
regressive process, the intercepts of which are functions of two 
distinct Markov switching variables. This model anticipates all 
business cycle peaks and troughs both in-sample and out-of-sample. 
In line with Chauvet and Senyuz (2016), we use a multivariate 
Markov switching model with two monthly latent factors: a first 
factor for real activity drawn from four coincident indicators widely 
used in the literature,1 and a second factor which only considers the 

term spread.2 Two distinct latent Markov variables were extracted: 
the first replicates the phases of the business cycle, according to the 
NBER dating committee, while the latent factor from the term 
spread permits the identification of two regimes, that is, an “or-
dinary regime” (positively sloping yield curve) and a “flattening re-
gime” where the yield curve flattens or reverses its slope. It is 
assumed that the transition probabilities of both Markov processes 
are time-varying, that is, the business cycle factor depend on the 
term spread while the transition probabilities between term spread 
regimes depend on the business cycle factor.3 Thus, regime changes 
in both factors are mutually dependent without forcing regime 
changes to occur at the same time. Thanks to this, we can test the 
existence of the four possible interactions between regime changes. 
For this, in both sets of transition probabilities, a Markov switching 
parametric change is assumed according the respective regime in 
business cycle and term spread.4 We tested for asymmetries in the 
bidirectional relationship between the two latent variables. We es-
timated the proposed model using a Bayesian approach, employing a 
Metropolis algorithm to estimate the posterior marginal densities of 
the parameters.5

By analyzing transition and forecasted probabilities, we found a 
systematic alternation of regimes in both factors. Business cycle 
recessions initiate a regime of increasing term spread after a flat-
tening phase. Once an ordinary phase of the term spread has come to 
an end, the flattening regime anticipates a phase change in the 
business cycle. However, according to the estimated time-varying 
transition probabilities, during the expansion phase, the cyclical 
factor does not anticipate the beginning of a flattening regime of the 
yield curve. The flattening regime precedes a recessive period, which 
is consistent with the empirical findings. Once the recession has 
begun, the business cycle factor significantly anticipates a change in 
the regime of the term spread, in line with the habitual expansionary 
monetary policy response to recessions and the consequent changes 
in long-term expectations. Based on this bidirectional dynamics, our 
model confirmed the beginning of a recession in March of 2020, 
which can be exclusively attributed to the economic measures 
adopted in response to the COVID-19 pandemic. Although not the 
primary goal of this work, we carried out an out-of-sample predic-
tion exercise that served to confirm the beginning of the COVID-19 
recession in March of 2020, and the corresponding start of the or-
dinary regime of the term spread.

This paper proceeds as follows: in Section 2 we will present the 
two-factor Markov switching model with time-varying transition 
probabilities; in Section 3 we will explain and interpret the results of 
the estimation of the model and assess its empirical accuracy; in 
Section 4 we will verify the predictive ability of the model and 
conduct the forecasting exercise mentioned. Finally, we offer our 
conclusions. In the Appendix, the likelihood function of the pro-
posed model is exposed.

1 For example in Chauvet (1998), Kim and Nelson (1998) and Stock and 
Watson (1991).

2 In this paper, the term spread refers to the difference in return between long-term 
and short-term government bonds. Specifically the spread between 10 year and 3 
month Treasury Constant Maturity rates (code T10Y3MM in the Federal Reserve Bank 
of St. Louis Economic Data).

3 Chauvet and Senyuz (2016) establish the lead-lag relationship between the yield 
factor and the economic factor in the transition matrix that relates both factors, while, 
for our part, said relationship occurs through the respective time-varying transition 
probabilities of each factor.

4 These parametric changes could fit some structural breaks mentioned in litera-
ture and the consequent predictive failures. As will be shown, our model has correctly 
signaled all recessions.

5 In Markov switching models, a Gibbs sampling approach has been more usual 
(Kim & Nelson, 1999).
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2. A two-factor Markov switching model with time-varying 
transition probabilities

As mentioned, we applied a two-factor Markov switching model 
with time-varying transition probabilities in both factors. The factor 
for the entire economy (first submodel) is estimated from the four 
coincident indicators by Stock and Watson (1991); the factor from 
the term spread (second submodel) only considers the spread be-
tween 10 year and 3 month Treasury constant maturities.6

The Markov switching cyclical factor model was taken from Kim 
(1994) and Kim and Nelson (1998) who modified the Stock and 
Watson (1991) dynamic common factor model by embodying the 
Markov regime change by Hamilton (1989) in the common factor. 
Stock and Watson (1991) elaborate a coincident economic indicator 
model using four monthly series, similar to that of the U. S. De-
partment of Commerce (DOC Index). The series that compose the 
index are the Index of Industrial Production, Personal Income less 
Transfer Payments, Manufacturing and Trade Industries Sales, and 
the Number of Nonfarm Employees.7 Stock and Watson (1991) as-
sume the cyclical component is unobservable and common to the 
four series, in that each series is the result of the sum of this 
common component and another specific or idiosyncratic. An au-
toregressive structure was used to model both these common and 
specific factors.

According Hamilton (1989), the stationary log-transformed, 
Ylog t , of a trended series Yt is assumed to follow a two regime 

process, such as µ =L Y S( )( log ( ))t t t , with L( ) an auto-
regressive polynomial and iidN (0, )t

2 . The changing mean 
growth of Yt , µ S( )t , depends on a two-state non-observed variable 

=S {0, 1}t , which follows a first order Markov process. In conven-
tional business cycle analysis, =S 0t denotes a recessive state and 

=S 1t an expansionary state. In this case, in µ µ µ= +S S S( ) (1 )t t t0 1 , 
µ µ>1 0 is expected. Kim and Nelson (1998) assume the non-ob-
served common cyclical factor of Stock and Watson (1991) is affected 
by Markov regime changes. Consequently, every demeaned growth 
series,8 =y Y Ylog log logi t i t i, , (with Ylog i the observed 
mean growth of Yi t, ) depends linearly on a common and a specific 
component:

= + +y C Clog i t i t i t i t, , , (1a) 

where i is a factor loading and iidN (0, )i t i, ,
2 . The specific com-

ponent of ylog i t, , Ci t, , can be assumed to follow an autoregressive 
process:

=L C( )i i t i t, , (1b) 

where iidN (0, )i t i, ,
2 . The correlation between series is captured 

exclusively by the common cyclical component Ct and, accordingly, 
=E [ ] 0i t j s, , , =E [ ] 0i t j s, , for i j and t s, and =E [ ] 0i t j s, , for 

every i j t, , and s. The Markov regime changes affect the intercept of 
Ct which can be modelled as.9

= +L C S( ) ( )C t C t C t, (1c) 

where = +S S S( ) (1 )C t C t C t,0 ,1 , and iidN (0, )C t C,
2 is un-

correlated with i t, and i t, in all leads and lags.
The probabilities of being at states 0 or 1 are assumed to follow a 

first-order Markov process, so the probability of being in regime St at 
period t depends only on the previous regime St 1. For example, 

= = =p S S Y p( 0/ 1, , )t t t t1 1 10, denotes the probability of entering a 
recession at t after a period of expansion at t 1. Transition prob-
abilities may be time-invariant or, alternatively, depend on certain 
economic fundamentals as assumed here when conditioning to Yt 1. 

In the transition matrix =p
p p
p pt

t t

t t

00, 10,

01, 11,
, the columns sum up the 

unity: under two regimes, from a given state at t 1, at period t
the system necessarily continues in the same regime or switches to 
the alternative. Apart from the transition probabilities, filtered and 
forecasted probabilities are also considered. Filtered probabilities, 

=p S i Y( / , )t t with =i {0, 1}, depend on sample information until 
period t , Yt , and on the complete model whose parameters 
are denoted by (see Appendix). Forecasted probabilities condi-
tioned by information Yt are obtained from 

=
=

=
=
=

+

+

+ +

+ +

+

+

p S Y

p S Y

p p
p p

p S Y

p S Y

( 0/ , )
( 1/ , )

( 0/ , )
( 1/ , )

t h t

t h t

t h t h

t h t h

t h t

t h t

00, 10,

01, 11,

1

1
, with 

=h 1, 2, ., the forecasting horizon.
Time-varying transition probabilities depending on economic 

fundamentals can be modelled following a logistic form (Diebold, 
Lee, & Weinbach, 1994; Filardo, 1994) or a probit form (Filardo & 
Gordon, 1998; Kim & Yoo, 1995) as assumed here. In the latter case, a 
latent variable S*t is defined as = = <p S p S( 0) ( * 0)t t and 

= =p S p S( 1) ( * 0)t t , where

= + + + +S S S S S x* (1 ) ( (1 ) )t C t C t C t C t t t,1 1 ,2 1 ,3 1 ,4 1 1

(2) 

for =S {0, 1}t 1 and iidN (0, 1)t . In expression (2) a constant and 
only one predetermined variable, xt 1, are considered. The transition 
probabilities of remaining in the same regime at t as at t 1 are 
given by

= = = = < + = +p p S S x p x x( 0/ 0, ) ( ( )) ( (t t t t t C C t C C t00, 1 1 ,1 ,3 1 ,1 ,3 1

(3a) 

= = = = + = +p p S S x p x( 1/ 1, ) ( ( )) 1 ( (t t t t t C C t C C11, 1 1 ,2 ,4 1 ,2 ,4

(3b) 

where (.) denotes the cumulative density function of the standard 
normal distribution. The corresponding transition probabilities of 
regime change are =p p1t t01, 00, and =p p1t t10, 11, . In the sub-
model corresponding to the common cyclical factor, xt 1 is the 
lagged term spread spt 1.

This refers to the common cyclical factor. For the submodel of the 
term spread this series alone is considered; thus, Eq. (1a) lacks a 
specific component and its factor loading is identically equal to 1. 
Hence,

= +spt sp t sp t, , (4a) 

and the analogous to Eq. (1c) is

= +L S( ) ( )sp sp t sp sp t sp t, , , (4b) 

with = +S S S( ) (1 )sp sp t sp sp t sp sp t, ,0 , ,1 , , and =S {0, 1}sp t, a latent 
variable corresponding to the flattening and the ordinary regimes of 
the yield curve respectively. Error terms are distributed according to 

iidN (0, )sp t sp, ,
2 and iidN (0, )sp t sp,

2 . For the term spread, in 
equations analogous to (2) and (3), the predetermined variable xt 1

corresponds to the common cyclical factor, Ct 1, estimated from the 
first submodel. Both submodels, for the common cyclical factor and 
the term spread, are expressed in state-space form.

The likelihood function of the complete model, f Y( / )t , is pre-
sented in the Appendix. In f Y( / )t , Yt consists of sample information 

6 Thus, apart from observation noise, the term spread and its estimated factor are 
practically similar.

7 The monthly series used here are the Index of Industrial Production (seasonally 
adjusted, code INDPRO), Real Personal Income excluding current transfer receipts 
(billions of chained 2012 dollars, seasonally adjusted, code W875RX1), Real 
Manufacturing and Trade Industries Sales (millions of chained 2012 dollars, season-
ally adjusted, code CMRMTSPL), and the series of All Employees (total non-farm, 
thousands of persons, seasonally adjusted, code PAYEMS). Source: Federal Reserve of 
St. Louis Economic Data, https://fred.stlouisfed.org.

8 Demeaning Ylog i t, in estimation avoids the problem of overidentification in 
determining the specific component Ci t, (see Kim & Nelson, 1999, p. 50).

9 This specification differs from Hamilton’s, where µ =L Y S( )( log ( ))t t t . In Eq. 
(1c), we have followed Chauvet (1998) and Kim and Yoo (1995). Note 
that µ =S S( ) (1) ( )t C C t

1 .
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until period t , and is the vector of parameters. The posterior 
density function of , according to Bayes rule, is

=f Y
f Y f

f Y
f Y f( / )

( / ) ( )
( )

( / ) ( )t
t

t
t

(5) 

where f ( ) is the prior density function of the parameters, and 
=f Y f Y f d( ) ( / ) ( )t t is the marginal density of the data, which, not 

being dependent on , does not affect maximization of (5) when the 
posterior mode is obtained. The posterior density f Y( / )t is a non-
linear function of the parameters in which a closed form is not 
available. To estimate this density, a sampling method such as the 
Metropolis algorithm10 can be used. This algorithm approximates 
the posterior density (or any target density) by generating a Markov 
chain { }j which, under certain regularity conditions (Chib & 
Greenberg, 1996), converges to f Y( / )t . The procedure implemented 
is as follows: 

i) a starting point 0 is chosen, in our case, the posterior mode;
ii) a proposal * from a symmetric jumping distribution, J ( */ )j 1 , 

is drawn.11 A Gaussian jumping distribution is employed here:

=J N c( */ ) ( , )j j
m

1 1 2 (6) 

where m is the inverse of the Hessian matrix computed at the 
posterior mode of f Y( / )t . The parameter c is a scale factor or 
tuning parameter;

iii) the acceptance ratio, =r f Y

f Y

( * / )

( / )
t

j t1 , is computed;

iv) the proposal * is accepted or rejected according to the fol-
lowing:

= r* withprobability min( , 1)

otherwise
j

j 1

Note that, if >r 1, * is clearly accepted because * increases the 
posterior density. But if <r 1, * is accepted with probability 
equal to r , and therefore r must be compared with a realization 
of a random variable, typically U (0, 1).

v) accepted or rejected *, return to step ii) until convergence.

The Markov chain { }j approximates the posterior density f Y( / )t
for a sufficiently large number of realizations. The scale factor c in (6)
must be selected by balancing two opposing tendencies. If c is too 
small, acceptance rates will be high and * convergence will slow 
down. On the contrary, if c is too large, r will be low and * will fall 
into regions with low probability density, remaining excessively in 
them. Under these considerations, the judgment on convergence 
must be based on simultaneously considering the mean value of r
throughout the iterations and visualizing the graphs and histograms 
of the marginal distributions of . When appropriate, it will be ne-
cessary to adjust the value of the scale factor accordingly.

3. Estimation results

The results of the estimated model are presented in Table 1. The 
model was estimated using two sample periods. The first period, 
1960m02 to 2020m03, ends the month when the economic impact 
of COVID-19 begins, causing a significant reduction in the values of 
the four activity indicators. The second period is until 2020m06. In 
the months of April, May and June, the four activity indicators 

showed extremely atypical growth rates, so we proceeded to esti-
mate dummy variables whose values are shown in the following 
Section (Table 4). The first and third columns of Table 1 show the 
estimated values of the posterior modes and their corresponding 
standard errors resulting from the maximization of the posterior 
density (see Appendix). The second and fourth columns present the 
results of the posterior means and standard errors of the parameters 
resulting from 10,000 iterations of the Metropolis algorithm for the 
posterior density. We have used a scale factor (see Eq. (6)) of 0.30 in 

Table 1 
Posterior modes, posterior means and standard errors (se) of the parameters of the 
regime switching model of equations (1) to (4). 

Estimation 
period:

1960m02-2020m03 1960m02-2020m06

posterior 
mode 
(se)

posterior 
mean 
(se) 
10,000 
draws

posterior 
mode 
(se)

posterior 
mean 
(se) 
10,000 
draws

2 0.4167 
(0.0389)

0.4195 
(0.0392)

0.4169 
(0.0388)

0.4261 
(0.0388)

3 0.8957 
(0.0614)

0.8954 
(0.0608)

0.8947 
(0.0613)

0.9101 
(0.0655)

4 0.2640 
(0.0160)

0.2680 
(0.0167)

0.2651 
(0.0162)

0.2689 
(0.0177)

,1
2 0.1120 

(0.0223)
0.1170 
(0.0213)

0.1118 
(0.0223)

0.1133 
(0.0216)

,2
2 0.1371 

(0.0283)
0.1362 
(0.0259)

0.1366 
(0.0281)

0.1366 
(0.0253)

,3
2 0.3141 

(0.1076)
0.3229 
(0.0870)

0.3133 
(0.1072)

0.3205 
(0.0887)

,4
2 0.0156 

(0.0014)
0.0158 
(0.0014)

0.0156 
(0.0014)

0.0156 
(0.0013)

sp,
2 0.0245 

(0.0028)
0.0250 
(0.0028)

0.0245 
(0.0028)

0.0253 
(0.0029)

C 0.4084 
(0.0653)

0.4196 
(0.0686)

0.4093 
(0.0653)

0.4254 
(0.0665)

sp 0.8682 
(0.0161)

0.8703 
(0.0169)

0.8706 
(0.0159)

0.8717 
(0.0168)

C
2 0.1845 

(0.0245)
0.1817 
(0.0244)

0.1831 
(0.0244)

0.1818 
(0.0253)

,1
2 0.1120 

(0.0223)
0.1132 
(0.0220)

0.1118 
(0.0223)

0.1184 
(0.0203)

,2
2 0.1371 

(0.0283)
0.1404 
(0.0254)

0.1366 
(0.0281)

0.1395 
(0.0285)

,3
2 0.3141 

(0.1076)
0.3198 
(0.0884)

0.3133 
(0.1072)

0.3247 
(0.0883)

,4
2 0.0156 

(0.0014)
0.0159 
(0.0014)

0.0156 
(0.0014)

0.0159 
(0.0015)

sp
2 0.0904 

(0.0066)
0.0925 
(0.0063)

0.0901 
(0.0065)

0.0918 
(0.0070)

C,0 -0.5386 
(0.0851)

-0.5116 
(0.0868)

-0.5273 
(0.0842)

-0.4878 
(0.0868)

C,1 0.1136 
(0.0223)

0.1105 
(0.0239)

0.1240 
(0.0228)

0.1220 
(0.0221)

sp,0 -0.1670 
(0.0263)

-0.1627 
(0.0266)

-0.1651 
(0.0263)

-0.1658 
(0.0284)

sp,1 0.1871 
(0.0250)

0.1868 
(0.0253)

0.1833 
(0.0248)

0.1813 
(0.0249)

aC,1 1.7058 
(0.2811)

1.7711 
(0.3085)

1.7135 
(0.2801)

1.8030 
(0.2922)

aC,3 -0.7331 
(0.2625)

-0.8244 
(0.2698)

-0.7385 
(0.2616)

-0.8344 
(0.2653)

aC,2 -3.2733 
(0.5182)

-3.6699 
(0.7226)

-3.2668 
(0.5163)

-3.6428 
(0.8929)

aC,4 -1.0414 
(0.3320)

-1.2708 
(0.4493)

-1.0391 
(0.3315)

-1.2983 
(0.5812)

asp,1 2.1175 
(0.2837)

2.2489 
(0.3572)

2.0718 
(0.2786)

2.1835 
(0.2866)

asp,3 2.0000 
(0.5033)

2.2947 
(0.6315)

2.0041 
(0.5079)

2.3395 
(0.6181)

asp,2 -1.7209 
(0.1738)

-1.7458 
(0.1875)

-1.7100 
(0.1736)

-1.7477 
(0.1671)

asp,4 -0.4003 
(0.1974)

-0.4729 
(0.2019)

-0.4132 
(0.2019)

-0.5068 
(0.2030)

10 Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and Metropolis and 
Ulam (1949).

11 The symmetry of the jumping distribution implies that =J J( / ) ( / )i j j i for all i
and j. Hastings (1970) generalizes Metropolis algorithm to include asymmetric 
jumping distributions. In this case the acceptance ratio is calculated 
as =r f Yt J j

f j Yt J j
( * / ) ( 1/ *)

( 1/ ) ( * / 1)
.
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the first sample period, and 0.25 in the second, after testing other 
values. Visual convergence towards the posterior marginal densities 
of each of the parameters can be admitted.12 The acceptance rates 
for both sample periods were 42.7 % and 43.6 % respectively.

Unlike the Gibbs algorithm, the Metropolis algorithm does not 
require natural conjugate priors to obtain the conditional posterior 
distributions. As a consequence we can choose prior densities 
without this limitation. For the prior densities of the parameters we 
opted for zero-avoiding prior distributions and vague priors, im-
posing only a priori knowledge of the signs of the parameters. Except 
for the autoregressive parameters, for the rest of the parameters we 
assumed a Gamma distribution ( ),

2 2
with = 6 and = 2, on 

which we have imposed sign restrictions. This distribution, defined 
for positive values, has an expectation of = 3 and a variance of 

= 32
2 , values that hardly restrict the search region. For the factor 

loadings, given the procyclical nature of the activity indicators, we 
assumed that (3, 1)i for =i 2, 3, 4. The factor loading corre-
sponding to the Index of Industrial Production, 1, was standardized 
to the unit (so, it was not estimated) in order to allow the identifi-
cation of the model. For all variances in Table 1 it was assumed that 

(3, 1)1

k
2 . On the other hand, for the autoregressive parameters of 

order 1 of the common cyclical factor and of the term spread, it was 
assumed that , (4, 4)C sp . This is a symmetric Beta distribution 
bounded between 0 and 1 that excludes these extreme values, and 
thus imposes stationarity and persistence in Ct and sp t, . In the 
parameters of S( )C t and S( )sp sp t, , depending on the regimes, nega-
tive signs were assumed in the recessive regime and in the flattening 
regime of the term spread, so that , (3, 1)C sp,0 ,0 ; and positive 
in the respective alternative regimes, , (3, 1)C sp,1 ,1 .

Posterior distributions of the factor loadings are sufficiently far 
from the null value: all factor loadings were statistically significant. 
None of the specific components of the four indicators has a sig-
nificant autoregressive autocorrelation. The common cyclical factor, 
Ct , shows the expected statistical characteristics. The values of the 
intercept of Ct , S( )C t , in both regimes, recessive, C,0, and expansive, 

C,1, are statistically significant. Minimal differences were found in 
the estimated values of both sample periods. The classification that 

S( )C t induces in the sample period, recessive and expansive, sa-
tisfactorily coincides with the dating of the business cycle of the 
NBER13 (see Fig. 1 and Table 2). Of the 96 months the NBER classifies 
as recessive in the period 1960m02–2020m06, the filtered prob-
abilities (posterior means) identify 86, some 90 %, when we consider 
a period as recessive if = >p S Y( 0/ ) 0.5t t . The 10 discrepancies occur 
immediately before or after recessions.14 The Quadratic Probability 
Score15 is 0.07 applying the same cut-off probability criterion.

The term spread had an average value of 1.43 % with a standard 
deviation of 1.20 % throughout the sample period 1960m02 to 
2020m06. This series is represented in Fig. 2, showing oscillations 
within maximum and minimum values of 4.15 % and − 2.65 %, to-
gether with the filtered probabilities of the flattening regime. The 

two regimes detected in the intercept of the demeaned term spread, 
S( )sp sp t, , show negative or close to zero values ( = 0. 16sp,0 ) for 

the flattening regime, and positive ( = 0.18sp,1 ) for the ordinary 
regime (see Table 1). Fig. 2 shows how, after a flattening phase of 
significant duration, the economy enters into recession. Once the 
recession started, the term spread jumps to its ordinary regime. The 
ordinary regime overlaps a stretch of the expansionary phase of the 
business cycle, until, at a certain time, the term spread changes to a 
flattening regime. With the exception of the second half of the 
1960 s, with few periods of high term spread, this pattern is repeated 
throughout the sample.

Table 2 shows the dating corresponding to Figs. 1 and 2, and 
supports the empirical adequacy of the regime switching model 
estimated in Table 1. In order to date the periods of recession and 
flattening of the yield curve (and of their complementary regimes) a 
cut-off probability of 0.5 was used in the filtered probabilities (re-
presented in Figs. 1 and 2). In addition, Table 2 shows the average 
term spread under each regime and its average duration. For the 
business cycle factor, Ct , the recessive and expansionary periods are 
also dated, indicating their average duration and the annualized 
growth rates of the activity indicators used for estimation. In the last 
column, the business cycle dating used by the NBER is given as a 
reference. From this dating, we find that the filtered probabilities of 
the recessive regime adjust acceptably well to the NBER dating, al-
though discrepancies of a few months sometimes occur. In ac-
cordance with Fig. 1, the activity indicators decreased during 
recessive periods and increased in expansive periods. The values of 
their rates show the greater severity of the recessions of the mid- 
1970′s and early 1980′s, the Global Financial crisis of 2008, and the 
COVID-19 crisis since March 2020. A reduction in the magnitude of 
these rates during expansionary phases since 2001 are also ob-
served. The average duration of the recessive periods, according to 
the cut-off probability criterion, was 12.2 months with a standard 
deviation of 6.2 months; expansionary periods had a duration of 76.5 
months with a high standard deviation of 42.7 months. Regarding 
the dating of the flattening and ordinary periods of the term spread, 
as a general rule, recessions are always preceded by a flattening 
period and followed by a period of positive term spread. The esti-
mated model correctly discriminates between both regimes: in the 
flattening regime periods, the average level of the term spread is 
close to 0 % or even negative, while in ordinary periods it always 
exceeds 1.5 %. The mean duration of the flattening periods was 34.7 
months with a standard deviation of 26.0 months while the figures 
for the ordinary regime are 41.7 and 31.4, respectively.

Notwithstanding the mentioned time pattern between term 
spread regimes and business cycle phases, Fig. 2 and the dating of 

Fig. 1. Common cyclical factor Ct (posterior means) and filtered probabilities of re-
cession (posterior means). Period: 1960m02–2020m06.

12 The histograms and graphs of the parameters for the 10,000 iterations for the first 
sample period (for the second, few changes were observed) are available upon re-
quest.

13 https://www.nber.org/cycles.html.
14 The cyclical factor Ct also shows a high contemporary correlation of 76 % with the 

growth rate of the Coincident Economic Activity Index from the Federal Reserve Bank 
of Philadelphia from 1979m01 to the present (code USPHCI, Federal Reserve of St. 
Louis Economic Data). This index is not the DOC Index originally considered by Stock 
and Watson (1991).

15 The Quadratic Probability Score, = =QPS p N( )
T t

T
t s t

2
1

2, measures the proxi-
mity of the probability with the realization of the event. The prediction of the 
probability, pt s, is made s periods ahead, in our case =s 0 since filtered probabilities 
are used. The dummy variable, =N {0, 1}t , is 1 when the period t is recessive, ac-
cording to the NBER. The QPS ranges between 0 and 2, where 0 represents maximum 
accuracy.
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Table 2 show short periods during which a jump to the alternative 
regime of the term spread occurred without being followed by a 
regime change in the business cycle. Of note is the variability in the 
sign of the term spread observed from 1980m10 to 1982m04,16 and 
some transitory reductions in the spread in 1984m08–1984m10, 
1985m12–1986m08 and 1986m12–1987m03. Within the long ex-
pansionary phase of the 1990 s17 the prolonged period of flattening 
regime prior to the recession of 2000 stands out, interrupted from 
1995m02–1996m03. Finally, the filtered probability shows a certain 
interruption of the ordinary regime period from 2001 to 2016 in the 
year 2012.

Given that the filtered probabilities show the expected succes-
sion of phases in both the term spread and the business cycle factor, 
we must now verify whether these variables determine the values of 
the transition probabilities, causing either the permanence or the 

regime changes. For this, the parameters C i, and sp i, are relevant. 
Given the negative signs that appear in Eqs. (3a) and (3b), in order to 
facilitate the interpretation, Table 1 presents the results in-
corporating such sign in the value of the estimation (the same was 
done with the prior densities (3, 1)), then, =aC i C i, , , =asp i sp i, , . 
For the transition probabilities of Ct , we have 

= +p a a sp( )t
C

C C t00, ,1 ,3 1 and = +p a a sp1 ( )t
C

C C t11, ,2 ,4 1 , and 
those of spt , = +p a a C( )t

sp
sp sp t00, ,1 ,3 1 and 

= +p a a C1 ( )t
sp

sp sp t11, ,2 ,4 1 . Thus, negative aC,3 is interpreted as a 
reduction in the probability of remaining in recession (or, in other 
words, an increase in the probability of leaving it, 
since =p p1t

C
t

C
01, 00, ) when the term spread increases. From an ex-

pansive phase, negative aC,4 implies an increase in the probability of 
remaining in expansion as the term spread increases, and a con-
sequent decrease in the probability of entering into recession. For 
the term spread, positive asp,3 indicates an increase in the probability 
of remaining in the flattening regime when Ct improves (since the 
flattening regime is left in recessions); while negative asp,4 indicates 
an increase in the probability of remaining in the ordinary regime of 
the term spread when Ct improves.

Although the filtered probabilities in Figs. 1 and 2 are highly in-
formative, it is interesting to test the ability of the model to predict 
moments of regime change. For example, in the forecasted prob-
ability of recession for period t with information up to t 1, 

= = = + =p S Y p p S Y p p S Y( 0/ ) ( 0/ ) ( 1/ )t t t
C

t t t
C

t t1 00, 1 1 10, 1 1 , the first 
addend reflects the forecasted probability of remaining in recession, 
while the second, =p p S Y( 1/ )t

C
t t10, 1 1 , that of entering into recession 

from expansion. Both contain information provided by the term 
spread. In Fig. 3, we have plotted these together with the transition 
probabilities, p t

C
10, .18

The values of =p p S Y( 1/ )t
C

t t10, 1 1 are low, some not exceeding 10 
%, although it should be noted that the probability of entering into 
recession is conditioned by the fact we are in an expansive period. 
Do not forget that the greatest weight corresponds to the com-
plementary probability, that of remaining in expansion, 

=p p S Y( 1/ )t
C

t t11, 1 1 . The interesting thing is to interpret p t
C
10, and 

Table 2 
Empirical adequacy of the estimated regime switching model (1) to (4): dating of the regimes of recession/expansion and of the flattening/ordinary regimes of the yield curve. In 
parenthesis, duration in months. Estimation period: 1960m02–2020m06. 

Term spread periods (prob > 0.5) 
and duration (months)

Average 
term spread

Business cycle periods  
(prob > 0.5) and duration 
(months)

Annualized mean growth rate of activity 
indicators

Recessions according to NBER 
(peaks and troughs)

IPI Income Sales Employment

1960m02–1960m05 (5) 0.79 1960m05–1961m02 (10) -7.6 0.3 -5.7 -2.8 1960m04–1961m02
1960m06–1962m01 (20) 1.53 1961m03–1970m03 (109) 5.9 4.9 4.7 3.2
1962m02–1970m01 (96) 0.50 1970m04–1970m11 (8) -5.9 -0.3 -2.8 -2.2 1969m12–1970m11
1970m02–1972m10 (33) 1.71 1970m12–1973m11 (36) 7.8 5.1 8.8 3.4
1972m11–1974m08 (22) -0.17 1973m12–1975m04 (17) -10.0 -3.8 -8.6 -1.5 1973m11–1975m03
1974m09–1977m08 (36) 2.19 1975m05–1979m10 (54) 5.6 3.8 5.1 3.7
1977m09–1980m04 (32) 0.23 1979m11–1980m07 (9) -8.6 -1.5 -6.8 -0.9 1980m01–1980m07
1980m05–1980m09 (5) 1.94 1980m08–1980m12 (5) 13.4 6.7 12.5 2.9
1980m10–1982m03 (18) -0.14 1981m01–1982m12 (24) -4.5 1.0 -3.9 1.2 1981m07–1982m11
1982m04–1985m11 (77) 2.31 1983m01–1990m09 (93) 3.8 3.6 4.1 2.7
1988m09–1990m08 (24) 0.44 1990m10–1991m05 (8) -4.4 -2.2 -0.8 -1.7 1990m07–1991m03
1990m09–1995m01 (53) 2.69 1991m06–2000m12 (115) 4.3 3.9 4.3 2.1
1995m02–1996m03 (14) 0.83
1996m04–1996m09 (6) 1.55
1996m10–2001m02 (52) 0.61 2001m01–2002m01 (13) -4.1 -0.9 -1.2 -1.3 2001m03–2001m11
2001m03–2004m112 (46) 2.71 2002m02–2008m01 (72) 2.4 2.4 2.8 0.9
2005m01–2008m01 (37) 0.41 2008m02–2009m06 (17) -13.2 -4.8 -11.1 -3.9 2007m12–2009m06
2008m02–2016m04 (99) 2.46 2009m07–2020m02 (128) 1.7 2.8 2.6 1.4
2016m05–2020m03 (47) 0.87 2020m03–2020m06 (4) -31.3 -14.6 -3.7 -30.0 2020m02–2020m04
Full sample average values 1.43 2.2 2.9 2.7 1.5

Fig. 2. Term spread of the yield curve and filtered probabilities of the flattening re-
gime (posterior means). Period: 1960m02–2020m06.

16 In the first years of Volcker’s term as Chairman of the Federal Reserve (August, 
1979- August, 1987), drastic anti-inflationary measures were adopted, then softened 
once the inflation rate was substantially reduced around 1982. For a historical over-
view of the main features of monetary policy since the end of the 19th century, see 
Bordo and Schwartz (1999) and, for a more recent period, Benati and Goodhart (2010).

17 The so-called Great Moderation years, Stock and Watson (2003).

18 Specifically, and also hereinafter, we represent the posterior means obtained by 
averaging the set of probabilities obtained from the 10,000 draws of the parameter 
vector.
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=p p S Y( 1/ )t
C

t t10, 1 1 as signals occurring just months before recessive 
periods begin (with the exception of a false signal around 1967). 
When recessions begin, these probabilities fall to zero because the 
conditioning has changed. In this case, we are interested in the 
forecasted probability of emerging from recession, =p p S Y( 0/ )t

C
t t01, 1

(and to a lesser extent in the forecasted probability of remaining in 
recession, =p p S Y( 0/ )t

C
t t00, 1 1 ) which is represented in Fig. 4.

Fig. 4 shows how the term spread signals an exit from recessions 
as well as the consolidation of expansionary phases. Transition 
probabilities, p t

C
01, , show high values beginning in recessive periods 

and continue during much of the subsequent expansion. They largely 
coincide with the ordinary phase of the term spread. The values of 

=p p S Y( 0/ )t
C

t t01, 1 1 show the contribution of the increases of the 
term spread (caused mainly by monetary expansions that reduce 
short-term interest rates) in emerging from recessions. Once the 
expansion has started, the favorable contribution of the increase in 
the term spread continues by inducing high values in 

=p p S Y( 1/ )t
C

t t11, 1 1 , that is to say, the forecasted probability of 
continuing in expansion.

While the term spread is clearly relevant in signaling the change 
of cyclical phase, when analyzing the opposite relationship, we can 
see that the cyclical component is only relevant in detecting the 
ending of the flattening regime; in other words, the variation of the 
term spread as a consequence of monetary expansions characteristic 
of recessions. Fig. 5 shows the transition probabilities of leaving the 
flattening regime and entering into an ordinary regime in the term 
spread, p t

sp
01, , as well as =p p S Y( 0/ )t

sp
t
sp

t01, 1 1 . It is evident that the end 
of the flattening regime coincides with the recessive phases. There 
are also some signals of exit from a flattening regime outside of 
recessive periods, coinciding with temporary increases of the term 
spread. On the contrary, the probability of a transition from an 

ordinary regime to a flattening regime of the term spread, p t
sp

10,
(Fig. 6), remains close to zero throughout the cyclical expansion 
phases, regardless of the regime change in the term spread that 
occurs during these periods (compare Figs. 1 and 2).

Summarizing, in this Section we have proceeded to relate busi-
ness cycle and term spread through a model that admits a bidirec-
tional relationship between both variables (Ang et al., 2006; Chauvet 
& Senyuz, 2016; Diebold et al., 2006) compared to the approach that 
only considers a one-way relationship that goes from the term 
spread to real economic activity. Unlike the usual modeling based on 
probit models that use the dating elaborated by the NBER as a 
dummy variable, the estimation of a regime switching model does 
not presuppose said dating but allows its estimation from sample 
information. The dating here obtained from activity indicators sa-
tisfactorily coincides with that of the NBER. This is in accordance 
with Chauvet (1998), Chauvet and Senyuz (2016), Kim and Yoo 
(1995) and Kim and Nelson (1998, 1999). Unlike Chauvet and Senyuz 
(2016), the bidirectional relationship between term spread and 
economic activity has been modeled using the transition prob-
abilities of the regimes considered in each of the variables. The fact 
of supposing parameter changes in this relationship has made it 
possible to find an asymmetric behavior in the time sequence of the 
term spread and business cycle regimes.

4. In-sample and out-of-sample forecasting ability

In this Section we will analyze the forecasting ability of the re-
gime switching model both in-sample and out-of-sample. Although 
in the previous section we verified the empirical adequacy of the 
model with regard to the dating of the business cycle phases and of 

Fig. 3. Transition and forecasted probabilities (posterior means) of entering recession 
from expansion. Period: 1960m02–2020m06.

Fig. 4. Transition and forecasted probabilities (posterior means) of leaving a reces-
sion. Period: 1960m02–2020m06.

Fig. 5. Transition and forecasted probabilities (posterior means) of emerging from the 
flattening regime of the term spread (=beginning of the ordinary regime). Period: 
1960m02–2020m06.

Fig. 6. Transition and forecasted probabilities (posterior means) of emerging from the 
ordinary regime of the term spread (=beginning of the flattening regime). Period: 
1960m02–2020m06.
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the flattening periods of the yield curve, here we will first estimate a 
probit model in which the variable to explain is the dating of the 
recessive periods according to the NBER. Secondly, we will assess the 
out-of-sample forecasting ability by focusing on the recessionary 
period of 2020 caused by the COVID-19 pandemic.

Starting with the estimation of a probit model, in Table 3 the 
endogenous variable is a dummy variable that takes a value equal to 
1 in the case of a recessionary period according the NBER. The results 
of the estimation of the three models allow us to assess the ex-
planatory ability of the variables obtained by the regime switching 
model of the preceding Section. In addition to a constant, the term 
spread with different lags was included as an explanatory variable. 
The first column of Table 3 shows that exclusively considering the 
term spread to predict recessive periods offers an explanatory ability 
of 33 % (McFadden R2). Note the positive sign of the one-month 
lagged term spread, while longer lags, 6 and 12 months, anticipate 
recessive periods with a negative sign. In the second column of 
Table 3, a lagged dummy variable that takes the value 1 when the 
term spread is in its flattening regime is added as an explanatory 
variable. A cut off probability of 0.5 was used to obtain it from the 
estimated filtered probabilities. Finally, in the third column, the 
lagged common cyclical factor, Ct 1, also obtained from our regime 
switching model, is added as an explanatory variable. This variable is 
also significant. Regarding its negative sign, remember that Ct is 
procyclical (positive factor loads in Table 1) while the endogenous 
variable of these probit models takes the value 1 in the event of a 
recession and 0 otherwise. In probit model #3, note that the term 
spread lagged one month has a negative sign while the significance 
and sign for lags of 6 and 12 months remains the same with respect 
to models #1 and #2. This is consistent with studies that analyze the 
forecasting ability of the term spread on recessions at horizons 
longer than one quarter (Dotsey, 1998; Dueker, 1997; Estrella & 
Mishkin, 1998; Wright, 2006). Furthermore, using information in 
addition to the term spread to forecast recessions is in line with 
Stock and Watson (1989). Finally, Fig. 7 shows the goodness of fit of 
probit models #2 and #3 of Table 3. It was observed that including 
the information of the cyclical indicators embodied in Ct reduces the 
brief (and false) recession signals produced by model #2 (also by 
model #1, not shown). Greater precision in the locating of recessive 
periods is also achieved, especially for the Global Financial crisis of 
2008–09.

We now turn to the out-of-sample forecasting exercise. Note 
that, unlike single-equation probit models, the regime switching 
model estimated in Section 3 provides predictions of real activity, 
term spread and the respective probabilities of the regimes affecting 
both variables. These will be taken into consideration below. In 2020, 
the collapse of activity indicators as a result of the lockdowns caused 

the NBER to date the end of the previous expansionary phase (a 
peak) in February 2020, declaring the start of a recession.19 Using the 
estimations of Table 1, we take April 2020 and July 2020 as the 
beginning of two predictive horizons (left and right columns in Fig. 8
respectively), and December 2021 as the end.

According to the Bayesian methodology, predictive density is the 
distribution of the observed series +yt h conditioned on sample in-
formation until period t and marginalized over the parameters 

=+ +f y Y f y Y f Y d( / ) ( / , ) ( / )t h t t h t t (7) 

where f Y( / )t is the posterior density of the parameters according to 
(5). For each of the draws of from f Y( / )t , the prediction equations 
of the Kalman filter provide predictions of both the observation 
vector yt t/ 1 and the state vector t t/ 1. When forecasting, lacking 
new sample information, the updating equations of the Kalman filter 
are not applied and the prediction equations must be iterated. 
Vector of observations, vector of states and probabilities converge to 
their corresponding steady state values. For each draw of the para-
meters, the forecasted probabilities of each regime depend on the 
transition probabilities as seen above. In turn, transition prob-
abilities depend on =+ + +x sp C{ , }t h t t h t t h t1/ 1/ 1/ , that is, the re-
spective predictions of the term spread and of the cyclical factor 
obtained from the corresponding submodels, conditioned on in-
formation up to period t . Consequently, the number of draws of the 
prediction density +f y Y( / )t h t is equal to that of the parameter vector 

. The corresponding fan plots of the predictions of the cyclical 
factor, term spread, and probabilities of recession and of flattening 
regime are shown in Fig. 8. To interpret Fig. 8, keep in mind that 
before the end of both sample periods (2020m03 and 2020m06) the 
dots correspond to the posterior means of either the estimated cy-
clical factor, Ct , or the probabilities indicated in each case. From these 
dates, the confidence bands of the predictions, whose central values 
correspond to their median value, are drawn. The term spread is an 
observed variable, so there is a tranche (Figures 8.3) of actual ob-
servations that has been drawn alongside its predictions.

In the four activity indicators (Industrial Production Index, 
Personal income, Sales, and Employment) for the estimation period 
ending in June 2020, it was necessary to model the three monthly 
rates of growth of April, May and June using dummy variables (see 
Table 4). Note that the three numerical magnitudes, both in April, 

Table 3 
Estimation of alternative probit models for the NBER recession periods. Significance 
levels: 10 % (*), 5 % (**), 1 % (***). Period: 1960m02–2020m06. 

Model #1 Model #2 Model #3

Constant -0.6139*** 
(0.1040)

0.7366*** 
(0.2253)

-0.2611 
(0.2996)

Ct 1 - - -2.6846*** 
(0.3299)

spt 1 0.5475*** 
(0.1261)

-0.0929 
(0.1480)

-0.4141** 
(0.1865)

spt 3 -0.2176 
(0.1355)

-0.1063 
(0.1319)

-0.0280 
(0.1604)

spt 6 -0.3500*** 
(0.1047)

-0.3650*** 
(0.1019)

-0.3746*** 
(0.1248)

spt 12 -0.6797*** 
(0.0906)

-0.5622*** 
(0.0903)

-0.2894** 
(0.1148)

Flattening regime: =S 0sp t, 1 - -1.7292*** 
(0.2602)

-1.1722*** 
(0.3390)

McFadden R2 0.33 0.43 0.68 Fig. 7. Fit of probit models #2 and #3 of Table 3. Period: 1960m02–2020m06. 

19 “In the case of the February 2020 peak in economic activity, the committee 
concluded that the subsequent drop in activity had been so great and so widely dif-
fused throughout the economy that, even if it proved to be quite brief, the downturn 
should be classified as a recession”. The NBER dated the end of the recession in April 
2020 being the shortest recession on record. https://www.nber.org/research/ 
business-cycle-dating.
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Fig. 8. Posterior predictions (fan plots). Estimation periods: 1960m02–2020m03 (left column) and 1960m02–2020m06 (right column). 
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with a pronounced decrease, and in May and June, with large in-
creases, have no precedents in the entire sample period. As they 
respond to information impossible to predict with data until March, 
the predictions made with information up to that month anticipated 
a recovery in growth rates reaching non atypical positive values 
around the third quarter of 2020.

The predictions of the common cyclical component, Ct , with in-
formation up to March and June differ only slightly given the effect 
of modeling with dummy variables. The filtered probability of re-
cession (with information up to March) jumped abruptly in March to 
unity from the previous low values (Fig. 8): although in October 2019 
the probability of recession reached 40 %, in November and De-
cember it fell below 30 %, reaching approximately 10 % in February 
2020. This is consistent with activity indicators which showed im-
provements in the months of January and February. In other words, 
with information up to February 2020, the possibility of entering 
into recession in 2020 seemed to be receding, a process that abruptly 
reversed in March with the crisis and lockdowns caused by 
COVID-19.

The term spread until March 2020 was in its flattening regime 
(see Fig. 2 and the corresponding fan plots in Figures 8.4) with even 
negative levels (inverted yield curve) in the months of June to Sep-
tember 2019, which seemed to anticipate a near entry into recession. 
Activity indicators that worsened in October, as said, began to im-
prove in November. On average, the term spread seemed to move 
away from negative values. In March, the value of the term spread 
increased to 0.57 % and the probability of a flattening regime for that 
month was slightly reduced. However, with information up to 
March, when a recession was already observed in Ct , a regime change 
in the term spread was correctly predicted for April, bringing the 
flattening regime to an end. From April to September 2020, the term 
spread remained around 0.5 %, rising to highs of approximately 1.5 % 
(Figures 8.3). The fan plot corresponding to the predictions made 
with information up to June 2020 includes in its confidence bands 
the values actually observed in 2021, although predictions 
throughout 2020 grew faster than the observed term spread. In any 
case, the model predicts the consequent continuity of an ordinary 
regime of the term spread that follows a recession.

5. Conclusions

In this work we have modelled the bidirectional relationship 
between the term spread and the business cycle by extracting two 

interrelated latent Markov variables: the first, from four activity 
indicators, replicates the phases of the US business cycle; the second, 
from the term spread of the yield curve, reveals an ordinary regime 
and a flattening regime. The succession of term spread regimes and 
recessionary and expansionary phases of the business cycle are 
systematic but asymmetric. Recessions initiate an ordinary regime of 
term spread that continue throughout much of the following ex-
pansionary phase. When the ordinary regime of the term spread 
comes to an end, the subsequent flattening regime anticipates a 
cyclical phase change. In accordance with the estimated transition 
and forecasted probabilities, while throughout the cyclical expan-
sion phase the cyclical component, Ct , does not anticipate a start of 
the flattening regime of the term spread, this regime is always 
present before a recession. Once the recession has started, Ct sig-
nificantly anticipates a change in the regime in the term spread, 
which would be consistent with an expansionary monetary policy 
response and the consequent expectations of financial markets 
about long-term interest rates. The empirical adequacy of the model 
and its in-sample and out-of-sample forecasting ability have been 
sufficiently tested.

Based on these bidirectional dynamics, our model served to 
confirm the beginning of a recession in March of 2020 which can be 
exclusively attributed to the economic measures adopted in re-
sponse to the COVID-19 pandemic. With information available until 
March 2020, the recession in 2020 was not evident, despite the in-
creased probability of recession throughout 2019, which, however, 
decreased in January and February of 2020. The term spread showed 
negative values or close to zero throughout 2019, thus continuing 
the flattening regime of the yield curve pending confirmation or 
refutation of a recession. The exceptional nature of the crisis be-
ginning in March 2020 abruptly and negatively dispelled any un-
certainties, since, as verified in this work, the forecasted 
probabilities estimated using information up to March for both the 
cyclical factor and the term spread, suddenly jump to the opposite 
values to those they had been registering.

In this work, we have not analyzed monetary policy of a period as 
long as the one considered. For a more complete understanding of 
the interactions between business cycle and interest rates, it is ne-
cessary to consider inflation given that inflation, along with eco-
nomic growth, fall within the mandate of the Federal Reserve. As we 
have shown, the start of a flattening regime is not signaled by the 
estimated business cycle factor. It is plausible that this beginning is 
explained by anti-inflationary policy responses, or the expectation 
these will take place. This is an avenue for further research.
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Appendix. Likelihood function of the model (1) to (4)

The present model consists of two submodels expressed in state-space form: one for the four activity indicators from which the common 
cyclical factor Ct is obtained, and the other for the term spread. Both submodels are affected by Markov regime switching. The connection 
between both submodels is in the time-varying transition probabilities, as these depend on a variable provided by the other submodel.

Kim’s algorithm (Kim, 1994; Kim & Nelson, 1999, pp. 99–106) is applied in each submodel. We briefly explain how the likelihood function of 
a state-space model is affected by Markov regime switching. Using a general notation and admitting the possibility of regime change in all 
parameters, a state-space system could be expressed as:

Table 4 
Outliers values (posterior means) for the activity indicators during the COVID-19 
crisis. Estimation period: 1960m02–2020m06. 

IPI Income Sales Employment

2020m04 -12.2846 
(0.644)

-5.6033 
(0.5430)

-10.6943 
(0.9402)

-14.4586 
(0.2324)

2020m05 2.0594 
(0.6168)

1.7935 
(0.5463)

8.2028 
(0.9108)

2.2888 
(0.2160)

2020m06 6.7048 
(0.6483)

1.5638 
(0.5460)

7.3085 
(0.9375)

3.6774 
(0.2242)

J.L. Cendejas Bueno Quarterly Review of Economics and Finance 88 (2023) 8–20

17



= +

= + +

y H

F

t j t
i j

t
i j

t
i j

j j t
i j

t
i j

( , ) ( , )

( , )
1

( , ) ( , )
(8) 

with iidN R(0, )t
i j

j
( , ) and iidN Q(0, )t

i j
j

( , ) . The superscript i j( , ), with =i j, {0, 1}, expresses the state of the system under the regime j at t
after having remained in the regime i in the previous period t 1. The Kalman filter shows the likelihood function of a system like (8) through 
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Under a two-state regime switching, we are unsure of the state at t or at t 1. At t 1, one of the two unobserved states, =S {0, 1}t 1 , could 
have been activated. Starting from each of these two realizations, St 1 has been followed at t by one of the two states =S {0, 1}t , so that, 
considering both periods, we have 22 possible trajectories. It has been possible to reach Yt by any of those four paths, and thus the density 
function must consider all of them
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Time-varying transition probabilities depend on predetermined sample information (see equation (3))
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Combining (11) and (12) and substituting into (10), we obtain:
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Finally, substituting (9) in (13), the conditional density of Yt is
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This expression is valid for the 22 trajectories that arise when transitioning from t 1 to t . However, for T periods the number of possible 
trajectories rises to 2T , and if rather than only two regimes, there were M regimes, the number of possible trajectories would be MT . To deal 
with this curse of dimensionality, Kim (1994) designs an approximation that, proceeding to reduce the dimension in the transition from one 
period to the next, allows it to be kept constant (this is done when updating the state vector and its covariance matrix). Under Kim’s algorithm 
for the entire sample the conditional likelihood function is

=
=

f Y f y Y( / ) ( / , )T
t

T

t t
2

1
(15) 

For our model, the observation vector of the first submodel consists of the demeaned monthly growth rates of the four activity indicators 
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where the first factor loading, that of ylog t1, , the Index of Industrial Production, has been normalized to one to allow the identification of the 
model. According to Eqs. (1b) and (1c) and the estimations in Table 1, in which no autocorrelation in the specific factors Ci t, was found, the 
transition equation representing the dynamics of the unobserved components Ct and Ci t, is
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where the intercept, = +S S S( ) (1 )C t C t C t,0 ,1 with =S {0, 1}t , is affected by a two state regime switching process. Gaussianity and or-
thogonality assumptions of the error terms imply that iidN R(0 , )t
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In system (18) only the parameter C j, is affected by regime changes. The conditional likelihood function of this submodel is

=
=
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where 1 is the vector of parameters of (18). The density f y Y( / , )C t
C

t 1 1 obeys the logic that led to the Eq. (14).
In the second submodel, the only observed variable is the (demeaned) term spread, spt . According the model in equation (4) and the 

estimations in Table 1, we have:
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where sp j, represents the corresponding value in = +S S S( ) (1 )sp sp t sp sp t sp sp t, ,0 , ,1 , , with =S {0, 1}sp t, a latent variable denoting the flattening 

and ordinary regimes of the yield curve respectively, iidN 0,sp t sp, ,
2 , and iidN 0,sp t sp,

2 . The conditional likelihood function of sub-

model (20) is
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where 2 is its vector of parameters. The density f sp Y( / , )sp t t 1 2 also follows the logic leading to the density function of Eq. (14). The cyclical 
factor Ct , estimated in submodel (18) from information of the vector yt

C , intervenes lagged in submodel (21) through their transition prob-
abilities. Finally, the posterior density f Y( / )T of Eq. (5) for the complete set of parameters is

=
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where K is the total number of parameters and f ( )k their prior densities assumed to be independent.
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