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a b s t r a c t 

Background and objective: Epilepsy is a brain disorder consisting of abnormal electrical discharges of neu- 

rons resulting in epileptic seizures. The nature and spatial distribution of these electrical signals make 

epilepsy a field for the analysis of brain connectivity using artificial intelligence and network analysis 

techniques since their study requires large amounts of data over large spatial and temporal scales. For ex- 

ample, to discriminate states that would otherwise be indistinguishable from the human eye. This paper 

aims to identify the different brain states that appear concerning the intriguing seizure type of epileptic 

spasms. Once these states have been differentiated, an attempt is made to understand their correspond- 

ing brain activity. 

Methods: The representation of brain connectivity can be done by graphing the topology and intensity of 

brain activations. Graph images from different instants within and outside the actual seizure are used as 

input to a deep learning model for classification purposes. This work uses convolutional neural networks 

to discriminate the different states of the epileptic brain based on the appearance of these graphs at 

different times. Next, we apply several graph metrics as an aid to interpret what happens in the brain 

regions during and around the seizure. 

Results: Results show that the model consistently finds distinctive brain states in children with epilepsy 

with focal onset epileptic spasms that are indistinguishable under the expert visual inspection of EEG 

traces. Furthermore, differences are found in brain connectivity and network measures in each of the 

different states. 

Conclusions: Computer-assisted discrimination using this model can detect subtle differences in the var- 

ious brain states of children with epileptic spasms. The research reveals previously undisclosed informa- 

tion regarding brain connectivity and networks, allowing for a better understanding of the pathophysi- 

ology and evolving characteristics of this particular seizure type. From our data, we speculate that the 

prefrontal, premotor, and motor cortices could be more involved in a hypersynchronized state occurring 

in the few seconds immediately preceding the visually evident EEG and clinical ictal features of the first 

spasm in a cluster. On the other hand, a disconnection in centro-parietal areas seems a relevant feature 

in the predisposition and repetitive generation of epileptic spasms within clusters. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Epilepsy is a brain disorder characterized by an enduring pre- 

isposition to generate epileptic seizures and by the neurobio- 

ogical, cognitive, psychological, and social consequences of this 
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ondition, Fisher [20] . Epileptic seizures are produced by abnor- 

al excessive and synchronous neural activity, often causing man- 

festations that include violent convulsions and loss of awareness. 

pilepsy comprises a wide range of disorders of different causes 

nd varying associated features. Similarly, epileptic seizures can 

ave diverse expressions that constitute different seizure types, [7] . 

his disease could affect around 50 million people worldwide re- 

ardless of age and is one of the most common chronic neurolog- 
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cal disorders [10] . In terms of mortality, 8.18% of patients die at a

edian age of 34.5 years, which is more than the mortality of gen- 

ral population [6] . Concerning its economic impact, epilepsy gen- 

rates 2.5 billion dollars through direct costs in the US, 1 but due 

o misdiagnosis, unemployment, or declines in labour productivity, 

he value of indirect costs is also high. 

Since epilepsy consists of abnormal electrical discharges of neu- 

ons in the cerebral cortex, electroencephalograms (EEGs) appear 

o be the most widely used tests by clinicians and researchers to 

haracterize and study the disease. This technique was first intro- 

uced by Hans Berger in the 1920s to measure electrical activity 

n the brain generated from its interneural communications [9] . It 

ses a set of electrodes placed around the scalp that registers elec- 

rical activity. Each electrode or channel represents a time series 

here an electrical potential represented on the Y-axis varies dur- 

ng different timestam ps on the X-axis. The amount of data reg- 

stered in each test is related to the number of electrodes, the 

ampling rate, and the recording duration used to collect the data. 

n the case of epilepsy, the abnormal activity in EEGs can be de- 

ected by comparing a regular background activity with changes 

hat occur during seizures (ictal states) or with abnormal epilep- 

iform activities that appear between seizures (interictal states) 

nd also comparing ictal versus interictal states. Although the dif- 

erences could be evident in some cases, this is a complex task 

ven for trained epileptologists. Accurate identification of abnor- 

alities heavily depends on experts with extensive clinical ex- 

erience that usually have a nonlinear working method that is 

ighly time-consuming and requires careful inspection, creativity, 

nd problem-solving skills. However, even in the best of scenarios, 

ome cases escape human perception and could be assisted and 

omplemented by new technologies that efficiently circumvent dif- 

culties humans may not be capable of solving. 

Computational modelling, network theory, and artificial intel- 

igence have proven to be necessary tools in the study of the hu- 

an brain [2] . Network theory is a way to study brain connectivity, 

hose deviations can be considered the basis of neurodegenera- 

ive diseases such as Parkinson’s disease, Alzheimer’s disease, amy- 

trophic lateral sclerosis or even epilepsy [16] . Regarding the anal- 

sis and interpretation of EEG signals, the large amount of data, the 

emporal complexity and the stochastic nature of the signal make 

t difficult to extract essential features by simple visual analysis or 

y purely statistical techniques. Regarding [3] , the alternative has 

een the use of nonlinear dynamics analysis techniques applied 

o time series analysis or artificial intelligence approaches, espe- 

ially deep learning methods, [1] . Deep learning was introduced 

y [13] as hierarchical models that can learn data representations 

ith multiple levels of abstraction. The main idea behind these 

odels is that we can replicate the behaviour of biological neu- 

ons with a minimal computational unit called artificial neuron. 

hese neurons are then organized by sequentially connected lay- 

rs, creating artificial neural networks. Neural networks with sev- 

ral stacked layers are called deep networks and their properties 

ave been extensively studied in the field of brain disorders, [15] . 

The motivation of this work is focused on certainly the most 

ysterious seizure type, known as epileptic spasms of focal on- 

et in children. One of its most intriguing features is that, unlike 

egular epileptic seizures, these usually appear in clusters, follow- 

ng a pseudo-periodic pattern, lasting several minutes, preferably 

pon awakening from sleep. This means that once a cluster begins, 

ultiple spasms will follow at different intervals as if generated 

y some kind of repetitive loop in the brain, [18] and [19] . It is

ot well known what exactly is occurring between these spasms 
1 https://www.ajmc.com/view/examining- the- economic- impact- and- implications- 

f-epilepsy 

e

t

t

2

ithin a cluster, and EEG at the time is visually indistinguishable 

rom the background EEG activity of the patient. In fact, several 

dditional brain states can be associated with this type of seizure: 

• “Interspasms with”. The moment between spasms within a clus- 

ter with epileptiform abnormalities. A cluster refers to an inter- 

val of time when a set of recurrent spasms occur. 

• “Interspasms without”. The moment between spasms within a 

cluster, without epileptiform abnormalities. 

• “Wakefulness with”. State in which the patient is awake, away 

from seizures, with visible epileptiform abnormalities. 

• “Wakefulness without”. The moment of wakefulness, away from 

seizures, without visible epileptiform abnormalities. 

• “Prespasm”. It marks the 1–2 s immediately preceding the first 

spasm in each cluster, with no identifiable EEG or clinical 

change from baseline, by human visual inspection only. 

Although epileptic spasms have been a well-recognized entity 

or more than 150 years, their pathophysiology and the anatomical 

rain structures involved in their genesis are still not fully clarified. 

ittle is known about their origin, their unusual EEG correlation, 

nd their peculiar response to medication. They do not respond to 

ommon anti-seizure medication and are many times refractory (as 

s the case for our population) but some respond to Adrenocorti- 

otropic Hormone (ACTH), steroids, or vigabatrin, [8] . The main ob- 

ective of this paper is to consistently discriminate distinctive brain 

tates in and around epileptic spasms that are indistinguishable 

nder the expert visual inspection of EEG traces and by analyzing 

rain connectivity and network measures at each of the different 

tates, we aim at disclosing novel information for gaining insight 

nto the pathophysiology and evolving features of this particular 

eizure type. This may subsequently contribute to the understand- 

ng of general epileptogenicity itself and could be applied to many 

pilepsies and seizure types. Therefore, two interesting case stud- 

es are presented from a medical point of view. 

Considering that the Prespam state can be regarded as a key 

lass since this is the moment immediately preceding the seizures, 

he most obvious case study will try to discriminate between both 

akefulness states (as this is a resting state, representing the reg- 

lar background activity) and Prespasm . The unpredictability of 

eizures is undoubtedly one of the most severe problems for pa- 

ients with epilepsy. Detecting them could allow for devising ways 

o warn patients and caregivers for timely interventions that could 

revent injuries and even control or mitigate seizures. By discrim- 

nating and characterizing connectivity in the Prespasm state we 

ntend to reveal information as a step forward in paving the way 

or future studies in the field of epileptic spasms and other seizure 

ypes. 

The second case study will work with the Interspams states and 

respasm. Although the Interspams state is visually indistinguish- 

ble from Wakefulness , epileptologists consider that the brain is 

ot in a resting state. The tendency to generate one spasm after 

nother, in the form of clusters, with apparently regular EEG activ- 

ty in between such spasms, does not seem entirely logical. Many 

ave hypothesized that an ongoing abnormal encephalographic ac- 

ivity persists throughout the cluster that characterizes the endur- 

ng predisposition to generate epileptic spasms within that cluster 

19] . This scalp EEG activity must be very subtle and complex, at 

east at the scalp level and for human analysis, since it remains in- 

isible to expert inspection and assessment. It is currently unclear 

hether this activity exists and how or where it is generated. Un- 

overing this EEG information allows for a better understanding of 

he pathophysiological mechanisms involved in epilepsy and differ- 

nt types of epileptic seizures. This improved knowledge creates, in 

urn, opportunities for clinical planning and management. 

Since both use cases cannot be solved by human visual percep- 

ion, we propose the use of images of graphs-based representa- 

https://www.ajmc.com/view/examining-the-economic-impact-and-implications-of-epilepsy
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ion of brain connectivity and deep learning models to discrimi- 

ate between states of both use cases. In particular, we use Con- 

olutional Neural Networks (CNNs), the best deep model for pro- 

essing images [12] trained with EEGs previously transformed into 

 set of graphs representing the topology and intensity of brain 

ctivations at a given time of the seizure covering all the states 

escribed above. The nodes correspond to the electrode positions 

nd the edges to the electrical activity between them. Represent- 

ng brain states in this way contributes to the performance of the 

odels and to a better understanding of brain functioning during 

he states. The results are complemented by applying graph the- 

ry. The metrics obtained will allow a better understanding of the 

pileptic states. 

The rest of the paper is structured as follows. Section 2 com- 

iles a set of related works. Section 3 describes the sources used in 

he research and defines applied methods. Section 4 shows the re- 

ults obtained. Section 5 discusses the results of the previous sec- 

ion. Finally, Section 6 gives some conclusions and proposes future 

orks in this research line. 

. Related works 

In this work, the graph images obtained from the electroen- 

ephalograms were processed with deep learning models to dis- 

riminate epileptic states. Then, these states are analyzed using 

etwork analysis techniques. This section enumerates some related 

orks describing the state of the art of this research. 

Brain connectivity has been widely studied with classical tech- 

iques, as seen in Lang [21] , where different works are compiled 

epending on three different forms: anatomical, functional, and 

ractical connectivity. For example, [17] uses metrics such as small 

orld, hierarchical modularity, or hubs to obtain study brain net- 

orks in several diseases. Also, [5] provides a review of network 

nalysis to study patients with epilepsy. In De Asis-Cruz, [22] , sta- 

istical correlation is used over preprocessed Magnetic Resonance 

maging (MRI) Scanners of pregnant women to find an association 

etween maternal distress and fetal brain functional activity. Signal 

rocessing methods like Short-Time Fourier Transformation (STFT) 

ver EEGs are applied in Ren [23] to confirm that elderly adults in- 

reased their functional connectivity when performing tasks with 

and-held audiovisual tools. Then, Balconi and Fronda [24] study 

he relationship between inter-brain and intra-brain connectivity 

sing the Hyperscanning algorithm and ANOVA over EEGs. A graph 

odel with MRIs from schizophrenic patients and healthy individ- 

als to check brain connectivity, Kim and Levina [25] . (Zandbagleh 

t al. 2022) develops a Support Vector Machine (SVM) to classify 

igh and low schizotypy EEGs. All these works are based on brain 

onnectivity but are not applied to epilepsy or use deep learning 

odels as in our work. 

As far as epilepsy is concerned, some papers using classical 

ethods are worth mentioning. Filipcik [26] uses a technique that 

omprises Independent Component Analysis, Matching Pursuit Al- 

orithm, and Granger Causality to detect the Seizure Onset Zone 

efore performing surgery on epileptic patients. Graph theory is 

sed by Carboni [27] with EEGs and MRIs to measure the con- 

ectivity in patients with focal epilepsy. Another interesting work 

s Leitgeb [28] , where complex network models from graph the- 

ry are used to find changes in EEGs from pediatric patients. Also, 

itsis [29] benefit from brain connectivity by using measures like 

oherence and applying graph theory to detect and predict epilep- 

ic seizures. In Hao [30] , Functional Magnetic Resonance Imaging 

rs-fMRI) was transformed into directed graphs, and an SVM was 

sed to classify controls from patients with temporal lobe epilepsy. 

hang [31] also, use graph theory to study the use of ultrasound 

ver the brain of epileptic rats as a treatment. Finally, Li and Jung 

32] create embeddings based on graph entropy to cluster EEGs 
3 
or seizure detection. Even though the previous researchers worked 

ith epileptic patients or animals, none of them applied to the 

ase of epileptic spasms or used deep learning models apart from 

orking with graphs. 

Regarding the use of deep learning models, the following works 

re available. In Riaz [33] , a convolutional model called FCNet is 

sed to classify MRIs of patients with Attention Deficit Hyperac- 

ivity Disorder. Brain connectivity is studied by Azevedo [34] us- 

ng Geometric Deep Learning over a large dataset of fMRI. In the 

articular case of epilepsy, MohanBabu, Anupallavi, and Ashokku- 

ar [35] apply an optimized deep learning network model with 

 long short-term memory to predict seizures in EEGs. Another 

ork is Gleichgerrcht [36] , where deep learning models are used 

n the case of temporal lobe epilepsy to classify between seizure- 

ree or disabling seizures. Another work Hekmati [37] uses a Multi- 

ayer Perceptron (MLP) to localize epileptic seizures based on fMRI. 

MRIs are used alongside EEGs to Multilayer brain networks and 

eep learning models Dang [38] to perform EEG-based epilepsy 

etection. Some connectivity and graph measures in the form of 

 vector are extracted from EEGs of epileptic patients to pre- 

ict seizures with LSTMs, Tsiouris [39] . In Ouichka, Echtioui, and 

amam [40] evaluate different convolutional models to predict 

pileptic seizures in intracranial EEGs. Also Partamian [41] uses 

ome connectivity measures modelled as matrices that are fed into 

NNs to detect seizures. Rijnders [42] obtain some connectivity 

etrics from EEGs, which are used to train a CNN model that can 

iagnose epilepsy. Then, the convolutional filters are obtained and 

sed as biomarkers. Finally, Raeisi [43] use Graph Convolutional 

eural Networks for the detection of seizures in neonatal EEGs. 

As can be seen, there are few papers where deep learning mod- 

ls have been used in epilepsy but none for discriminating the 

tates in the particular case of epileptic spasms raised in this work. 

his means that we can discriminate between different epileptic 

tates that are indistinguishable by the human eye. Furthermore, 

o our knowledge, no studies take advantage of transforming EEGs 

nto image representations of graphs to be classified by a deep 

earning model. Apart from obtaining an accurate classifier that 

emonstrates the differences between the different states, we have 

tudied their connectivity with graph metrics, helping to under- 

tand some of the mechanisms underlying these seizure states. 

. Methods 

.1. A training dataset of graphs representing EEGs 

.1.1. Collecting the EEGs 

This study has been performed with a set of retrospectively col- 

ected scalp EEG samples obtained from a group of pediatric pa- 

ients with epilepsy. In particular, an epileptic seizure type known 

s epileptic spasms of focal onset had been successfully recorded 

nd classified during video-EEG monitoring (synchronized video 

nd EEG recordings) at Hospital Universitario La Paz in Madrid, 

pain. The hospital is officially categorized as a tertiary referral 

entre by the National Healthcare System, with the highest level 

f epilepsy care. The present research has followed strict recom- 

endations by the hospital Ethics Committee. 

For each patient, a set of 25 electrodes was placed on the ex- 

ct scalp locations according to the standardized international 10–

0 and 10–20 systems for electrode placement. An EEG tracing is 

ormed by several records called channels that represent the po- 

ential difference between two electrodes in a particular instant of 

ime. EEGs can, therefore, be studied as time series, considering 

hat it is a data sequence that has been measured in different time 

ntervals in chronological order. Data has been collected and pro- 

essed for these cases using a Nicolet video-EEG machine and as- 

ociated software, with a 512 Hz sampling rate (512 values are col- 
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Table 1 

Summary of information in patients’ EEGs. 

Length Epileptic spams Clusters 

Patient 1 119 horas 75 14 

Patient 2 101 horas 170 7 

Patient 3 125 horas 331 16 

Patient 4 7 horas 40 7 

Patient 5 3 horas 115 3 
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ected every second). Data has been collected and processed with 

 software called Nicolet EEG Software. 2 

The dataset is created from the data of five pediatric patients 

ages 5–11 years), anonymized using identification numbers from 

 to 5, with video-EEG recorded focal onset epileptic spasms. Com- 

lete long-term video-EEG recordings had been previously ana- 

yzed and interpreted by the same specialized clinical neurophysi- 

logist (one of the authors), creating a medical report according to 

egular clinical practice. The reports were later reviewed and con- 

rmed by a second physician. The patients were monitored dur- 

ng different periods in which multiple epileptic spasms grouped 

n clusters occurred. This information is collected in Table 1 . 

For this study, recordings were again examined, and for each 

atient, specific segments from different states were carefully se- 

ected and manually cut and labelled. Only the parts with the 

ewest artefacts were selected through expert visual inspection, 

nd passive patient behaviours were sought within those segments 

as confirmed through given instructions, patient feedback, and/or 

oncurrent video analysis). Generally, it is crucial to verify that op- 

imal technical standards are met for any EEG recording and that 

o segments with excess artefacts or atypical conditions undergo 

omputer analysis. The EEG technician himself should guarantee 

his. Each of the five patients has a set of 98–118 EEG segments 

ategorized according to the different states defined. Segment du- 

ation varied slightly from 3 to 6 s because even the same state 

ategories may have different durations (for example, spasms or 

pileptiform abnormalities). They were hand-selected by an epilep- 

ologist to include homogenous information. 

Finally, we need to transform the EEGs into a format that can 

e managed with Python. In this case, we have used a tool called 

rainStorm 

3 that converts .e files into .edf (European Data Format). 

rainStorm works with 64 channels, while ours are 25-channel 

EGs. 

.1.2. Modelling the EEGs as graphs 

In a graph-transformed EEG, nodes represent the electrodes and 

heir positions on the scalp while edges obtain their values de- 

ending on a given connectivity measure. In this way, depending 

n the metric it extracts the information of a single node/channel 

r describes the relation between a pair of nodes/channels. 

As no tools could do the transformation we needed, we have 

eveloped a Python open-source library called EEGraph 

4 that could 

odel the EEGs as images representing the connectivity between 

rain regions, [14] . The library receives an EEG file, and by setting 

 window size and the connectivity measure to be used (either in 

ime or frequency domains), it returns both a set of adjacency ma- 

rices and images of the graphs. Fig. 1 shows the workflow fol- 

owed by the library. 

We implemented 12 of the most studied connectivity measures 

or the potential difference between electrodes. In our case, we 

ave transformed the whole dataset into images with labels de- 

cribing different brain states concerning the spasms. The nodes 
2 https://neuro.natus.com/neuro-support 
3 https://neuroimage.usc.edu/brainstorm/ 
4 https://github.com/ufvceiec/EEGRAPH 

a

t
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se a tag with the name of the electrode, and the edges use differ- 

nt colour scales and widths depending on the type of connectivity 

easures used. Before obtaining the images, we checked that there 

re no empty graphs nor repeated instances that could introduce 

oise or a bias in the dataset. Then, if the connectivity measure be- 

ongs to the time domain, the signal can be represented with only 

ne value. In this case, the edges vary from grey to black alongside 

ts width (the highest values have wider edges in black). For each 

onnectivity measure, there is a default threshold that avoids the 

reation of edges without relevance. Fig. 2 shows an example of 

he image output using a time-frequency connectivity measure. 

If the connectivity is in the frequency domain, the signal must 

e decomposed into three frequency bands: theta, alpha, and beta. 

e have decided to focus only on these bands for several rea- 

ons. Firstly, the main focus of our study is not the actual ic- 

al/seizure state ( Spasms state ) but rather the states preceding or 

ossibly predisposing to this particular type of seizure ( Wakeful- 

ess, Interspasms, and Prespasms states). These states look more 

ike background activity and interictal states than seizure activity. 

ost background activity at this age range (5–11 years) is above 

elta frequency, unlike at younger ages where slower frequencies 

re more relevant, [11] . Secondly, we have tried to concentrate 

n the usual real-world clinical setting where sampling frequen- 

ies are usually set at around 256 Hz or less, not allowing for 

 good analysis of high-frequency oscillations, [4] . It is also very 

ifficult to examine gamma frequencies in the scalp EEG setting 

ue to the filtering effect by interposed tissues such as the skull 

nd the meninges, as well as due to contamination by artefacts 

such as muscle-derived). We believe the analysis of slower and 

igher frequency bands is more suited for intracranial recordings, 

lthough we do not disregard their potential implication in any 

etting. In this case, we obtain a graph, following the structure of 

he previous one, for each band that is then combined, generat- 

ng a coloured graph. Fig. 3 shows an example of an image output 

sing a frequency domain connectivity measure. 

During the research, we worked with all the metrics provided 

y EEGraph, but only 5 of them gave good results. Following, we 

escribe and formally define each of them. 

Pearson correlation (C), which describes the correlation be- 

ween two-time series, is defined in Eq. (1) . 

 x,y = 

σxy 

σx σy 
(1) 

In the Equation, x and y are both time series, σ xy is the covari- 

nce for the time series, σ x and σ y are their respective standard 

eviations. The value ranges from −1 to 1, where 1 means a perfect 

orrelation, −1 is a perfect inverse correlation, and 0 is no correla- 

ion. 

Normalized Cross-Correlation (CC) uses the lag of one time se- 

ies concerning the other to measure their similarity. 

 C x,y ( m ) = 

R xy √ 

R xy ( 0 ) R yy ( 0 ) 
(2) 

In this equation, R xy is the cross-correlation between the two 

ignals x and y. Then, R xx and R yy are the autocorrelations of the 

ignals. 

Corrected Cross-Correlation (CCC) measures how symmetric the 

ross-correlation between two time series concerning the second 

ime series’ lag with the first one. Eq. (2) defines it. 

 C C x,y ( m ) = C C x,y ( m ) − C C x,y ( −m ) (3) 

Here, x and y are again time series, CC is their cross-correlation, 

nd m is the lag. 

Squared Coherence (SC) measures the spectrum relationship be- 

ween two-time series, considering leading, lagged, and smoothed 

https://neuro.natus.com/neuro-support
https://neuroimage.usc.edu/brainstorm/
https://github.com/ufvceiec/EEGRAPH
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Fig. 1. Workflow followed by EEGraph. 

Fig. 2. An EEG timestamp representation as a graph using EEGraph with a time-domain connectivity measure. 

5 
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Fig. 3. An EEG timestamp representation as a graph using EEGraph with a frequency domain connectivity measure. 
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elationships. Eq. (4) provides a formal definition. 

 C x,y ( f ) = 

| G x,y ( f ) | 2 
G x,x ( f ) G y,y ( f ) 

(4) 

In the Equation above, G xy denotes the cross-spectral density 

etween time series x and y, G xx and G yy their power spectral den- 

ities. SC provides a value between 0 and 1, where 0 means no 

orrelation and 1 perfect correlation in the frequency spectrum. 

Imaginary Coherence (IC) is similar to squared coherence as it 

easures the relationship between the spectrum of two-time se- 

ies but is less sensitive to external effects. The following Equation 

escribes it. 

 C x,y ( f ) = 

Imag ( G xy ( f ) ) √ 

G xx ( f ) G yy ( f ) 
(5) 

In this Equation, G xy denotes the cross-spectral density between 

ime series and G xx , G yy the power spectral density for both time 

eries. 

Phase Locking Value (PLV) measures the fluctuations in the dif- 

erence of phase in two-time series. Eq. (6) describes this measure. 

 LV = | E [ exp ( i �φrel ( t ) ) ] | (6) 

In the Equation above the phase difference is denoted by 

φrel ( t ) of x and y at time t, belonging to an interval from 0 to

 π and E is a function that average the value in times. 

Phase Lag Index (PLI) is similar to the previous one but consid- 

rs the changes in the sign of the phase. The description of this 

easure is in Eq. (7) 

 LI = | E [ sign ( �φrel ( t ) ) ] | (7) 

The symbols of the equation are the same as Eq. (6) but the 

hase difference is in an interval [- π , π . 
6 
The Weighted Phase Lag Index (WPLI) is similar to PLI but is 

ess sensitive to external effects. Eq. (8) denotes it. 

 P LI = 

| E [ | Imag ( G xy ( f ) ) | ∗ sign ( Im ag ( G xy ( f ) ) ) ] | 
E [ | Imag ( G xy ( f ) ) | ] (8) 

This Equation is similar to the previous one but uses the cross- 

pectral density between signals denoted as G xy . 

Directed Transfer Function (DTF) describes the random influ- 

nce of channel j on channel i for each frequency using Eq. (9) .

T F 2 j→ i ( f ) = 

∣∣H i, j ( f ) 
∣∣2 

∑ k 
m =1 

∣∣H i, j ( f ) 
∣∣2 

(9) 

H(f) is a transfer matrix of an MVAR (multivariate autoregres- 

ive model) where different elements are chosen. The Equation 

onstitutes a normalized version of DTF ranging from 0 to 1. It in- 

icates the inflow ratio from channel j to channel i for all inflows 

o channel i . 

Power Spectrum (PS) is only applied to one time series describ- 

ng its distribution in the frequency domain. Eq. (10) is used to 

alculate it. 

 S ( f ) = | X ( f ) | (10) 

In the Equation, Fourier Transformation is applied using X ( f ). 

The Shannon Entropy (H) measures the average amount of in- 

ormation that a time series contains. 

 ( x ) = −
∑ 

i 
p ( x i ) log ( p ( x i ) ) (11) 

In the Equation, the natural logarithm is calculated to p( xi ) 

hich is the unnormalized probability of the event x . 
i 
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Table 2 

Graph images in training set for use case 1. 

Connectivity measures in the time domain Connectivity measures in the frequency domain 

Greyscale images 302: Class 1 (148), Class 2 (154) 906: Class 1 (462), Class 2 (444) 

Colour scale images - 302: Class 1 (148), Class 2 (154) 

Table 3 

Graph images in training set for use case 2. 

Connectivity measures in the time domain Connectivity measures in the frequency domain 

Greyscale images 313: Class 1 (154), Class 2 (159) 939: Class 1 (462), Class 2 (477) 

Colour scale images – 313: Class 1 (154), Class 2 (159) 
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Spectral Entropy (SE) is similar to H but for the frequency do- 

ain. Eq. (12) describes it. 

E(X ) = 

∑ f 
s 
/ 2 

f=0 
p ( f ) lo g 2 ( p ( f ) ) 

log 2 ( psd . size ) 
(12) 

The Equation uses base 2 logarithm, f s as the sampling fre- 

uency, p(f) as the normalized power spectrum density using the 

elch method and psd.size is the size of the power spectral den- 

ity. 

Modelling the EEGs as graphs has two main benefits. First, the 

ser can obtain a representation of the different brain areas with 

 connectivity network obtained with the desired parameters. Sec- 

nd, the implemented connectivity measures allow a spectral anal- 

sis (typical when working with EEGs) and an analysis of the brain 

tates through time by obtaining different timestamps. In our case, 

e set the window size in 1 s for both use cases and have used the

onnectivity measures provided by EEGraph. Tables 2 and 3 show 

he number of graph images we obtained for both use cases and 

heir classes (data always has a balance). It should be highlighted 

hat we have created one training set for each of the 12 connectiv- 

ty measures provided by EEGraph. 

Output images have a size of 170 × 1,165 × 1 pixels in the 

ase of black and white images and 170 × 1,165 × 3 in the case 

f colour ones. Images have been normalized, ranging from 0 to 1, 

y dividing the values by 255 to speed up the training time. 

.1.3. Convolutional neural networks 

As we are working with images of graphs representations of 

rain connectivity, it makes sense to work with CNNs. A CNN uses 

he convolutional operator to extract the main features of an image 

egardless of its location Krizhevsky, Sutskever, and Hinton [44] . 

CNN models are composed of an input layer, a set of convolu- 

ional blocks, and a classification multilayer perceptron. The convo- 

utional blocks comprise a convolutional layer and a pooling layer. 

hese blocks are stacked to extract the main features of the image 

nd, at the same time, reduce the dimensionality to a minimum 

iece of data with the extracted characteristics. Convolutional lay- 

rs are composed of neurons and their weights, where each neu- 

on is a matrix of numbers called a filter or kernel. The kernel goes 

hrough all the input images calculating an element-wise product 

hich is finally summed up to obtain the output value, as is de- 

cribed in Eq. (13) . 

 k = f ( W k ∗ X ) (13) 

In the Equation above, X is the input image, W k is the filter 

ith the k th feature map, which uses the convolutional operator 

lement by element denoted by ∗ (multiplying pixels in this case). 

The output of a kernel corresponds to a feature of the image. 

fter passing through the whole image, it obtains an activation 

ap output matrix. One of the hyperparameters set during the 

raining stage is the number of kernels and their size. Then, the 
7 
ooling operation is applied, allowing for the reduction of dimen- 

ionality. There are two types of pooling layers: maximum and 

ean. The former obtains the maximum value in the activation 

ap. The latter calculates the average of the values. 

.1.4. Classifying images of EEGs modelled as graphs 

The proposed solution has to manage the output images from 

he EEGraph library. These represent different timestamps from 

EGs. The images contain a graph describing brain connectivity at 

 particular moment. As we have said before, CNNs are the best 

eep learning model fitting with these data types. 

As this work comprises two use cases, we have developed two 

ifferent CNNs. In both cases, we used grid search to obtain the ar- 

hitecture’s hyperparameters that perform best by combining dif- 

erent values Bergstra and Bengio [45] . The first use case starts 

ith an input layer of 170 × 1165 (the size of the images plus a 

epth of 3 in the case of colours), followed by two convolutional 

locks that process the image and a multilayer perceptron for the 

nal classification. The first block has a convolutional layer with 16 

lters of 3 × 3 size and ReLU as an activation function, followed 

y a MaxPooling layer. The second block is similar to the first but 

ses 32 filters and has a GlobalMaxPooling layer. After the convo- 

utional stage, we use a dropout of 25%, meaning that this percent- 

ge of the neurons will be randomly disconnected to avoid overfit- 

ing. At this point of the architecture, the data classification starts 

ith a multilayer perceptron of one hidden layer with 64 neurons 

nd ReLU as an activation function, finished with an output layer 

f one neuron with a sigmoid activation function. 

.1.5. Training the models 

We have used the following hyperparameters in this stage. Bi- 

ary cross-entropy is the loss function whose prediction target is 

inary: 0 or 1, Ruby and Yendapalli [46] . The step size in the loss

unction is a learning rate of 0.0 0 0 01 Plagianakos, Magoulas, and 

rahatis [47] . Finally, Adam, as an optimizer for both models, is de- 

ned as “an algorithm for first-order gradient-based optimization 

f stochastic objective functions, based on adaptive estimates of 

ower-order moments” Kingma and Ba [48] . The number of epochs 

as varied, with 10 0 0 for the first use case and 200 for the second.

Training starts by randomly dividing the dataset into two parts. 

he larger (80% of the dataset) is used for training and the smaller 

20% of the data) is used for testing (instances that will be used 

o check the performance of the model once trained). To ensure 

he generalization of the results and avoid overtraining we applied 

he cross-validation (CV) method to the training dataset. CV is a 

echnique used to evaluate the results of statistical analysis and 

nsure that they are independent of the partition between training 

nd test data. We used k-fold CV, a variant in which a partition- 

ng of the training dataset into k subsets of data is performed and 

 training processes are carried out. In each of these processes a 

ubset of data is selected to validate the results and the remaining 

-1 are used for the training itself. In each repetition, the subset 
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Table 4 

Accuracies for different connectivity measures in case 1. 

Train Validation Test 

Squared coherence 93.6% 88.2% 87.2% 

Pearson correlation 82.4% 80.4% 76.6% 

Directed transfer function 81.9% 80.4% 76.6% 

Corrected cross-correlation 79.4% 74.5% 70.2% 

Table 5 

Accuracies for different connectivity measures in case 2. 

Train Validation Test 

Pearson correlation 91.9% 86.8% 81.3% 

Corrected cross-correlation 75.5% 73.6% 71.9% 

Table 6 

Metrics for squared coherence in case 1. 

Train Validation Test 

Specificity 94.0% 88.0% 91.3% 

Sensitivity 94.1% 88.5% 90.9% 

Precision 93.2% 88.5% 83.3% 
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Table 7 

Metrics for Pearson correlation in case 2. 

Train Validation Test 

Specificity 90.7% 88.9% 83.3% 

Sensitivity 93.3% 84.6% 79.2% 

Precision 93.2% 88.5% 83.3% 

Table 8 

Top 10 electrodes’ degree strength for use case 1. 

Class 1 (Prespasm) Class 2(Wakefulness) 

Node Value Node Value 

Fp1 8.2( ±3.71) Fp1 5.7( ±3.38) 

Fp2 8.0( ±3.89) Fz 5.5( ±3.27) 

F8 7.8( ±3.84) F3 5.4( ±3.35) 

F7 7.7( ±3.75) Fp2 5.3( ±3.46) 

Fz 7.7( ±3.65) F7 5.3( ±3.44) 

F3 7.6( ±3.72) F4 5.2( ±3.40) 

F4 7.5( ±3.99) F8 5.2( ±3.44) 

T3 7.2( ±3.98) T3 4.9( ±3.40) 

Table 9 

Top 10 electrodes’ degree strength for use case 2. 

Class 1(Interspasm) Class 2(Prespasm) 

Node Value Node Value 

Cz 11.6( ±4.13) Cz 14.4( ±3.0) 

Pz 11.6( ±4.26) Pz 14.4( ±2.92) 

P4 11.4( ±4.43) P4 14.2( ±3.11) 

C4 11.2( ±4.38) C4 13.9( ±3.26) 

F4 11.1( ±4.47) Fz 13.6( ±3.68) 

T6 11.0( ±4.29) F4 13.4( ±3.93) 

Fz 11.0( ±4.62) F3 13.1( ±3.95) 

Fp1 10.9( ±4.26) C3 13.1( ±3.42) 

O1 10.9( ±4.38) P3 13.1( ±3.42) 

Fp2 10.8( ±4.26) O1 13.0( ±3.17) 

Table 10 

Graph density for both cases. 

Class 1 Class 2 

Use case 1 0.3268( ±0.1538) 0.2477( ±0.1238) 

Use case 2 0.7679( ±0.1491) 0.8230( ±0.1506) 
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f data used for validation is changed until the complete dataset 

s run through. In each run, the values of the implemented met- 

ics are obtained and then averaged over the k runs to obtain the 

ean and the corresponding standard deviation. Our training set 

as been divided into 5 subsets (5-fold), so that in each iteration 

raining is carried out with 80% of the training set and validation 

ith the remaining 20%. Finally, the experiments have been re- 

eated 10 times to ensure that the metrics obtained are valid and 

ot the result of chance. 

.1.6. Graph theory to analyze the EEGs 

As models have been trained with graph representations of the 

EGs, we are obtaining some graph theory metrics to have an in- 

epth explanation of how the different brain regions behave in 

articular states. The most exciting metrics are degree strength and 

raph density, defined in the following. 

Degree strength measures the sum of the weights (w ij ) for each 

ode’s edge (Si). Eq. (14) defines it. 

 i = 

N ∑ 

i =1 

w i j (14) 

The density of a graph is the number of edges in the network 

ompared to the number of potential edges, Goldberg [49] . This 

etric indicates how the nodes are connected between them. It 

an measure brain connectivity as a whole and discern whether 

he brain is in a hyperconnectivity state or not. 

. Results 

This work provides deep learning models for predicting two use 

ases in the field of epilepsy. For each use case, we have trained 

he models with the 12 possible connectivity measures provided 

y EEGraph. We have trained two models (one for each use case) 

nd obtained the accuracy to measure their performances. Accu- 

acy is the ratio between correct and performed predictions and 

s an excellent initial result to calculate the model performance. 

ables 4 and 5 show the accuracy for use cases 1 and 2, respec-

ively. They compile the different connectivity measures that have 

urpassed 70% with the test set. 

These metrics for use case 1 and squared coherence connectiv- 

ty can be seen in Table 6 . 

The same metrics for use case 2 and Pearson correlation are in 

able 7 . 
8 
Once we have checked that deep learning models are good at 

lassifying the states in both use cases, we are using graph theory 

o study the instances of the whole dataset. In this case, we have 

btained two metrics: degree strength and graph density. 

The values of the strength degree are in Table 8 , showing the 

op 10 electrodes for each class in use case 1. Values indicate the 

verage between all instances plus its standard deviation. 

The same values but for use case 2 have been compiled in 

able 9 . 

Finally, we have obtained the graph density for the classes in 

oth use cases. This information corresponds to Table 10 . 

. Discussion 

All the results from Tables 3 and 4 seem to correspond to good 

odels that do not overfit or underfit. This fact can be checked by 

ccomplishing the bias-variance trade-off Belkin [50] . Bias is good 

s the differentiation between the proposed states cannot be made 

y humans, Fisher [20] . In the absence of a gold standard to verify

he reliability of the identification of background activity states, in- 

erictal epileptiform discharges, or even ictal patterns by EEG, the 

nterrater reliability of the diagnosis using EEG recordings is usu- 

lly sought to assess this situation, Jing [51] and Benbadis [52] . 

In terms of variance, none of the models seems to overfit. Accu- 

acy is an excellent metric to intuit how the model is performing. 
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evertheless, other metrics like specificity, sensitivity, and preci- 

ion should be studied in fields like medicine. Specificity gives the 

atio between the number of true negatives ( Prespasm states classi- 

ed as Prespasm ) and the total of those predicted as true negatives 

nd false positives (resting states classified as Prespasms ). This sit- 

ation could be a problem in the case of developing a device as it 

ill notify the patient of an incoming spasm or even perform an 

ntervention when that is not occurring. Precision measures the ra- 

io between the number of true positives ( Prespasm states correctly 

lassified) and the total of those predicted as true positives and 

alse positives, which is interesting in terms of erroneously identi- 

ying false spasms as spasms. Sensitivity is the same as precision 

ut taking into account false negatives ( Prespasm states classified 

s another state) instead of false positives, very useful to avoid no- 

ifying the patient of a spasm when this is not happening. 

Essential features of epilepsy emerge on a network level, and 

herefore it benefits significantly from using network analysis tools 

uch as the ones implemented in our work, Tables 7 to 9 . They

an objectively characterize underlying pathological brain activity 

ssociated with epilepsy. 

As a starting point, we observe that degree strength in all elec- 

rodes and graph density overall are significantly higher in the 

respasm (immediate preictal) state than the Wakefulness (rest- 

ng regular background activity) or the Interspasms state. Here, in- 

reased brain connectivity seems to occur in a phase of imme- 

iate preparation for the seizure cluster. When comparing Pres- 

asm with Wakefulness , it is a frequency domain connectivity mea- 

ure that shows the most accuracy; we could interpret the degree 

f synchronization between different frequency bands across the 

rain that differentiates these two states more clearly. On the other 

and, when comparing Prespasm with Interspasms , as it is time- 

omain connectivity, the measure that provides the best perfor- 

ance, it suggests that what marks the difference with the In- 

erspasms state is more related to the similarity between signals 

rom different brain areas. Consistent evidence shows that local 

nd dispersed assemblies of synchronized neural activity across 

he epileptic brain can change in the background or interictal state 

nd regularly throughout seizure initiation and progression. Those 

hanges may mark times of increased seizure generation. Also, 

ultiple studies have reported that the epileptic brain is char- 

cterized by increased neuronal synchrony except possibly before 

eizure onset, when synchrony may decrease locally. Regions of 

educed synchrony can be the bridging connections between the 

eizure onset zones and the surrounding brain. There is reduced 

unctional connectivity between the epileptic neuronal assembly, 

enerating focal seizures and surrounding brain regions. In effect, 

he seizure onset zone is at some point disconnected from sur- 

ounding brain regions, Litt [53] ; Warren [54] . 

Furthermore, these connectivity measures allow us to locate the 

egions with higher metrics in each state. In the immediate preic- 

al state, areas of maximal degree strength seem to point towards 

lectrodes in more anterior brain regions, perhaps prefrontal and 

remotor, when considering frequency synchronization. However, 

hen comparisons are made with the Interspasms state, the sig- 

ificant changes seem to correlate with medial centro-parietal re- 

ions. 

The underlying pathogenesis of epileptic spasms is complex and 

ot fully understood. The condition is proposed to be a widespread 

erangement of a network at a particular stage of development. 

any hypothesize that epileptic spasms could be triggered by an 

nteraction between the cortical grey and subcortical structures. 

nce activated, the subcortical, the brainstem, or both could be- 

ome generators of epileptic spasms, [19] . Epileptic spasms seem 

o be a final common manifestation of processes that start on a 

ortical level in varying sites. The disruption in the resting state 

etworks of the brain by chaotic brain activity could be responsible 
9 
18] . Direct or delayed involvement of prefrontal, premotor/motor, 

nd centro-parietal cortices has explicitly been implicated in deter- 

ining ictal changes, de la Vaissière [55] ; Nariai [56] . 

Looking at the results in Tables 5 and 6 , the model for use case

 still performs very well, with values around 88% in the validation 

tage. So, this model performs the same with false negatives and 

rue negatives. In the case of the model for use case 2, it seems 

hat the models have good values with worse results in terms of 

ensitivity. These results mean that the model categorized some 

respasm states as Interspasms . This situation makes sense from a 

athophysiological point of view since the two states compared in 

se case 2 are supposed to be more similar than those in use case 

. From a clinical point of view, the consequences of this slightly 

ower sensitivity may not be as relevant as in the previous case 

ecause the states in use case 2 imply an increased probability of 

 seizure coming either immediately or sometime soon. 

The study has some limitations related to the number of pa- 

ients and the variability in their age. Although the number of pa- 

ients seems small, several papers use deep learning techniques 

ith EEGs of epileptic patients like Fraiwan and Alkhodari [57] ; 

lakiyaselvan, Khan, and Shahina [58] ; Srinath and Gayathri [59] ; 

ao [60] . We also should highlight that the population itself is rare. 

o begin with, epileptic spasms are not very common themselves, 

et alone of focal onset and at the age range of our population. 

he age range (5–11 years) of patients was carefully selected. This 

ind of seizure is more typical of the first year of life (so-called 

nfantile spasms), which is where most of the literature has con- 

entrated. The fact that epileptic spasms may occur later in life 

s enigmatic and unraveling these somehow peculiar brain mecha- 

isms and how they persist beyond the usual age may yield clini- 

ally relevant clues. Although the brain undergoes many matura- 

ional changes throughout life, particularly during childhood but 

lso during adulthood, some periods seem more stable than others. 

n the pediatric population, major comparative EEG changes clearly 

ccur in the neonatal and early infancy periods. EEG characteris- 

ics remain however very much stable within the age range of our 

opulation, which is consistent with maturational status and pro- 

esses more typical of that period. Our population selection also 

voids the more turbulent adolescent period. All of this justifies 

he smaller number of patients included, [11] . 

. Conclusions and future works 

In this work, we have used deep learning models and network 

nalysis to reliably identify, quantify and try to understand rele- 

ant characteristics of brain function that cannot be visually as- 

essed, and which are particularly valuable in the clinical setting 

f patients with epileptic spasms. 

In the first case, the model seems accurate according to all met- 

ics, with values above 88%. In the second case, the second model 

as a low sensitivity value, but it does not seem to be a critical 

roblem for this use case. As for the connectivity study, we show 

vidence that the epileptic cortex in children with focal epileptic 

pasms is temporally functionally disconnected in the period be- 

ween spasms within a cluster and becomes hyperconnected again 

n the immediate seconds preceding the spasms themselves. We 

peculate that this dissociation observed mainly in centro-parietal 

reas during interspasm states suggests an involvement of these 

egions in the early predisposition to seizure onset, playing a role 

n the generation of focal epileptic spasms, particularly within clus- 

ers. According to our results, other areas such as the prefrontal, 

remotor, and motor cortexes might be more involved in the hy- 

ersynchronized state that occurs in the few seconds immediately 

receding the visually evident EEG and ictal clinical features of the 

rst spasm of a cluster. By discriminating the Prespasm and Inter- 

pasms states and depicting some of their characteristics, we also 
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rovide information that may be helpful in the steps leading to 

rediction of epileptic spasms and perhaps other seizure types. To 

ur knowledge, this is the first time such findings have been de- 

cribed. 

Nevertheless, a significant challenge remains in distilling bio- 

ogical mechanisms from network phenotypes of disease processes 

tacey [61] . These results may constitute a clinically useful elec- 

rophysiological signature for different aspects of the management 

f these patients, including spatial mapping of the seizure onset 

one for epilepsy surgery. Much remains to be learned in epilepsy, 

nd these instruments could provide new insights for understand- 

ng the mechanisms of other seizure types and epilepsies. 

It remains for future work to perform further analysis using hy- 

rid models that could segment the EEGs. For example, separating 

he EEGs by channels feeding different recurrent neural networks 

RNN) and combining the outputs using an evolutionary algorithm 

ould help in the final accuracy of the model. We also plan to cor- 

oborate the results obtained in this study using graphical convolu- 

ional neural networks (GCNN), a type of CNN especially oriented 

o the analysis of graphs. 
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