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Abstract: Advancements in autonomous driving have seen unprecedented improvement in recent
years. This work addresses the challenge of enhancing the navigation of autonomous vehicles in
complex urban environments such as intersections and roundabouts through the integration of
computer vision and unmanned aerial vehicles (UAVs). UAVs, owing to their aerial perspective, offer
a more effective means of detecting vehicles involved in these maneuvers. The primary objective is to
develop, evaluate, and compare different computer vision models and reduced-board (and small-
power) hardware for optimizing traffic management in these scenarios. A dataset was constructed
using two sources, several models (YOLO 5 and 8, DETR, and EfficientDetLite) were selected and
trained, four reduced-board computers were chosen (Raspberry Pi 3B+ and 4, Jetson Nano, and
Google Coral), and the models were tested on these boards for edge computing in UAVs. The
experiments considered training times (with the dataset and its optimized version), model metrics
were obtained, inference frames per second (FPS) were measured, and energy consumption was
quantified. After the experiments, it was observed that the combination that best suits our use case
is the YoloV8 model with the Jetson Nano. On the other hand, a combination with much higher
inference speed but lower accuracy involves the EfficientDetLite models with the Google Coral board.

Keywords: UAV; drones; computer vision; deep learning; edge computing; artificial intelligence;
reduced-board hardware; energy efficiency; object detection

1. Introduction
1.1. Context

Advancements in autonomous driving have seen unparalleled improvement in recent
years [1]. The growing challenge of managing urban traffic efficiently and sustainably
demands innovative solutions that incorporate emerging technologies such as computer
vision and unmanned aerial vehicles (UAVs) to optimize real-time traffic control and
monitoring [2–4]. This section examines the state of the art in the various elements and
factors that play a role in the problem, including UAVs, neural networks, edge computing,
and datasets.

1.1.1. Unmanned Aerial Vehicles

There are two categories of unmanned aerial vehicles (UAVs or drones) based on the
level of autonomy during operation: those that require constant piloting and autonomous
ones that do not need human intervention for most of their operation [5].
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The use of drones began in the early 21st century for military and security pur-
poses [6–8]. These early drones were simple in construction, small in weight, and equipped
with motors that allowed them to fly remotely and autonomously for several hours [8,9].
Subsequently, drones began to be commercialized, opening a range of possibilities [6,8,9].

Currently, drones are employed in various productive sectors, including agriculture,
construction, maintenance, the environment, mining, filming, and insurance. Although a
wide range of applications has already been explored, technological advancements continue
to drive the development of drone use in other sectors and tasks such as emergency
assistance, package transportation, and traffic management (the focus of this work), among
many other potential applications [10,11].

Lastly, being such a powerful and versatile technology, security and privacy are
crucial aspects of drone operation. Therefore, robust authentication protocols must be
implemented to ensure safe operation within the drone network, known as the Internet of
Drones (IoD) [6,12].

1.1.2. Object Recognition with UAVs

In the context of this work, UAVs are utilized for real-time image capture and object
inference through artificial intelligence algorithms. These applications can range from
capacity management to traffic control and communication with autonomous vehicles
for their safe circulation [13,14]. Comparing models within the latter use case is the main
objective of this study.

Autonomous vehicles are expected to significantly reduce the number and severity
of accidents. However, intersections and roundabouts pose a challenge for these vehicles
due to their complexity and variability [15–17]. Scientists and companies have proposed
various solutions to address this issue, with some relying on algorithms to predict driver
intentions, while others make use of control units installed at intersections to communicate
the current situation to vehicles [18,19].

A recent study demonstrated that the use of drones equipped with cameras to cap-
ture driver movements at intersections is more effective than other methods of collecting
such information [20]. There are also studies that show that using drones equipped with
high-resolution cameras to capture driver movements at intersections is superior to other
methods of recognizing this information [21].

1.1.3. Datasets

Research conducted by Milić et al. and Krajewski et al. examined the requirements for
gathering a dataset of vehicle trajectories [8,22]. We can extrapolate these requirements to
our goal, which is object recognition in images captured by drones. The criteria include
the following:

• Dataset size: It is essential for the dataset to contain many images with a wide variety
of labeled objects within these images;

• Diversity of locations and time frames: The images used to train the model should
be taken at different locations and under various visibility conditions. This helps
prevent overfitting, enabling the model to be effective in a variety of contexts;

• Recognition of a wide range of objects: When labeling the images, we should not
exclude objects related to those we want to predict. For example, if we are labeling all
cars, we should not exclude trucks from the dataset. We can group all objects into a
category like “vehicles” or create a category for each type of object.

To meet these requirements, this work utilizes two different datasets that provide a
substantial amount of data, a diverse range of scenarios, and recognition of numerous
objects within each image [23,24].

1.1.4. Neural Networks for Object Detection

Within the field of object detection, there are various architectures, and some of the
most popular ones today include the following:
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• YOLOv5: This model is the fifth version in the YOLO (You Only Look Once) series
and has been widely used for real-time object detection. One of the main advantages
of YOLOv5 is its speed, making it ideal for real-time applications. For example, it
has been used for real-time face mask detection during the COVID-19 pandemic,
demonstrating its utility in real-world situations where speed is essential [25,26];

• YOLOv8: This is an enhanced version of YOLOv5, which has achieved even more
impressive results in terms of speed and accuracy. A recent study introduced a new
model called DEYO, which combines YOLO with DETR (DEtection TRansformer) to
improve object detection [27,28];

• EfficientDet: This model is known for its balance between efficiency and performance
in object detection [29].

• DETR (DEtection TRansformer): This model has revolutionized the field of object
detection as the first end-to-end object detector. Although its computational cost is
high, it has proven to be very effective in real-time object detection [30].

These models represent significant advancements in object detection and have laid the
foundation for future research and developments in this field.

1.1.5. Cloud Computing and Edge Computing for Traffic Management

Cloud computing architecture is characterized by the centralized processing of data
on remote servers hosted in cloud data centers. This approach offers many advantages,
including great flexibility and scalability, ease of management (as service providers han-
dle infrastructure maintenance), and ample storage capacity. However, it also presents
challenges such as data transfer latency, which is not suitable for applications requiring
real-time responses, and data security concerns not only in storage but also in data transfer
to/from the cloud. Additionally, cloud services can lead to significant long-term costs for
continuous and extensive usage [31].

On the other hand, edge computing [32] relies on decentralized data processing on
local devices, close to where data are generated. This architecture offers benefits such as
the low latency that is critical for real-time applications as well as data privacy and security,
which is especially important for sensitive data applications. However, it also comes with
disadvantages, including limited resources—edge devices often have limited computing
and storage resources compared to cloud servers—more complex management that requires
detailed configuration and maintenance attention, and limited storage capacity, with edge
devices typically offering minimal storage capacity.

Currently, the trend is to blend these two architectures either in different stages of the
process (e.g., training and inference in AI) [33] or in a combined coexistence in the solution
deployment, where data are processed locally, but the results of processing are stored in
the cloud [34,35].

Indeed, the use of edge computing in drones for traffic management is a promising ap-
plication and offers significant advantages compared to a centralized cloud-based approach.
Below are some reasons why edge computing is beneficial in this context:

• Low latency: In traffic management, latency is critical. Drones need to make real-time
decisions to avoid collisions and maintain efficient traffic flow. Edge computing allows
drones to process data locally, significantly reducing latency compared to sending data
to a distant cloud for processing;

• Enhanced security: By processing data locally on the UAVs themselves, dependence
on internet connectivity is reduced, decreasing exposure to potential network inter-
ruptions or cyberattacks. This increases security in air traffic management;

• Distributed scalability: Using multiple drones equipped with edge computing allows
for distributed scalability. This means that more drones can be added to address areas
with dense traffic or special events without overburdening a central infrastructure;

• Data privacy: Air traffic management may involve the collection and transmission of
sensitive data. Edge processing ensures that the data remain on the drones, improving
privacy and complying with data privacy regulations;



Drones 2023, 7, 682 4 of 18

• Energy efficiency: Transmitting data to the cloud and waiting for results can consume
a significant amount of energy. Local processing on the drones is more energy-efficient,
prolonging battery life and drone autonomy.

However, there are also challenges associated with using edge computing in drones
for traffic management, such as the need for a robust network infrastructure for effective
communication between drones and coordination. Additionally, managing and updating
multiple edge devices can be more complex than managing a centralized system.

1.2. Research Gap

Despite the advancements in autonomous vehicle technology and computer vision
systems, there are still significant challenges in the field. One of the major issues is the ability
of autonomous vehicles to navigate safely and efficiently in complex urban environments
such as intersections and roundabouts. These situations present dynamic and variable
traffic conditions that demand fast and precise decision making, which is difficult to
achieve with current solutions [15,16]. The state of the art reveals that, although several
solutions have been explored, there is still a lack of effective solutions that optimally
integrate computer vision with UAVs to enhance autonomous vehicle navigation. Existing
computer vision algorithms and models have limitations in terms of accuracy, robustness,
and efficiency. Furthermore, the selection and optimization of low-power hardware for
implementing these models also present challenges.

The rapid technological evolution has facilitated the development of autonomous
vehicles, promising significant benefits in terms of road safety, efficient use of transporta-
tion infrastructure, and accessibility [15,36]. However, the realization of this potential
is hindered by various challenges, especially those related to autonomous navigation in
complex urban environments [15,16]. Despite advancements in autonomous vehicle tech-
nology, making safe and efficient decisions in complex traffic situations like intersections
and roundabouts remains a challenge [15,16].

Therefore, there is a need to develop and compare different computer vision models
and low-power hardware to optimize the collaboration between UAVs and autonomous
vehicles. The goal is not only to enhance the capabilities of autonomous vehicles but also to
contribute to the field by providing new knowledge and solutions that could be applicable
to other contexts and challenges in computer vision and autonomous vehicles.

1.3. Aim of the Study

This work arises in response to the challenges outlined in Section 1.2, aiming to
enhance the navigation of autonomous vehicles through the utilization of computer vision
and unmanned aerial vehicles (UAVs). The perspective offered by a UAV provides an
aerial view, which can significantly enhance the perception and comprehension of the
environment for autonomous vehicles [37]. Furthermore, real-time vision can provide
up-to-date information on traffic conditions, enabling autonomous vehicles to make more
informed decisions [14].

Another justification lies not only in the need to enhance the safety and efficiency of
autonomous vehicles but also in the potential of computer vision and UAVs to achieve
this. Despite prior research in this field, there is still ample room for innovation and
improvement. This work focuses on the development and comparison of different computer
vision models and low-power hardware to optimize the collaboration between UAVs and
autonomous vehicles.

The outcomes of this research could be used by autonomous vehicle manufactur-
ers to improve their navigation systems, by transportation authorities to enhance traffic
management, and by computer-vision software developers to refine their algorithms and
models. Ultimately, this work contributes to the field of study by exploring and comparing
various approaches to computer vision in UAVs, providing a valuable addition to existing
knowledge in this field.
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2. Materials and Methods
2.1. Study Design

This work encompasses the details of a study that was designed based on several
stages (see Figure 1), covering the entire process of creating a computer-vision system using
low-power computers embedded in drones to provide “edge computing” capabilities. This
involves everything from data or hardware selection to deployment and validation on the
boards. Specifically, the following three stages are herein defined:

1. Hardware, software, and dataset selection;
2. Dataset construction and cleaning;
3. Experimentation:

a Dataset preprocessing for training optimization;
b Training with preprocessed/original datasets;
c Validation of deployment results;
d Measurement of energy consumption during deployment.
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Figure 1. Experiment design, with all its phases.

2.2. Hardware, Software and Datasets

Different resources, both hardware and software, were utilized for the execution of
the experiments. These resources are described in this section.

2.2.1. Reduced-Board Computers

Regarding hardware, various widely used low-power computer systems were em-
ployed, as can be observed in Table 1. In this table, in addition to technical specifications,
there is a column indicating the weight in operational order (including microSD card,
etc.). The amount of RAM on these single-board computers for neural network processing
is of varying importance depending on the board and the network observed. Thus, for
example, the Raspberry Pi 3B+ board is the oldest, and only the 1 GB (DDR2) RAM version
is available. For this case, the RAM is important since the image processing is carried out in
the microprocessor and the main memory, and the better these are, the better the results we
can obtain, but this board is only manufactured with this configuration. The Google Coral
device also comes in a 4 GB variant, which would enhance results in networks requiring
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more RAM (like YOLO) but would not have as great an impact on those utilizing the TPU
in processing, such as the EfficientDetLite models (see Section 3: Results and Section 4:
Discussion for more details). The 1 GB version of the Google Coral device was used in our
experiments, as it was the one available at the time of conducting the experiments.

Table 1. Selected reduced-board computers. Technical specifications and weight.

Board RAM CPU GPU Peso

Raspberry Pi 3B+ 1 GB DDR2 64-bit @ 1.4 GHz VideoCore IV 400 MHz 107 g
Raspberry Pi 4 4 GB DDR4 Quad-core 64-bit @ 1.8 GHz VideoCore VI 107 g

Jetson Nano 4 GB DDR4 Quad-core MPCore processor 128 NVIDIA CUDA cores 243 g

Google Coral 1 GB DDR4 Quad Cortex-A53, Cortex-M4F Integrated GC7000 Lite
TPU coprocessor: 161 g

2.2.2. Software

Regarding software, different programming languages, development environments,
and libraries were used for the development of computer vision systems:

• VSCode was used as an integrated development environment (IDE) for code development;
• Anaconda was used as a package manager and environment manager for Python;
• Python was the programming language used in the implementation of algorithms;
• TensorFlow is an open-source framework for machine learning and neural networks;
• PyTorch is a machine learning library also used in the implementation of algorithms;
• RoboFlow was utilized for dataset image management and preprocessing.

2.2.3. High-Performance Computing

In terms of high-performance computing, cloud computing resources were employed.
Specifically, the cluster at the European University of Madrid (UEM) was used for ma-
chine learning model training. This cluster consists of 10 network-connected nodes, each
configured with 32 cores, 256 GB of RAM, and NVIDIA RTX 3080Ti GPUs with 12 GB
of RAM.

2.2.4. Datasets

Regarding data, two datasets of aerial images were used, both developed by the Intelli-
gent Control Systems (SIC) group at UEM: (1) “Traffic Images Captured from UAVs for Use
in Training Machine Vision Algorithms for Traffic Management” [23] and (2) “Roundabout
Aerial Images for Vehicle Detection” [24].

2.3. Preparation of Objects and Materials

This section describes how the dataset was constructed and the approach to training
and deploying models on reduced-board computers.

2.3.1. Dataset Generation

Two datasets created by the Intelligent Control Systems (SIC) Research Group at the
European University of Madrid (UEM) were used and combined to create a new one. The
first dataset, generated using the CVAT annotation tool [38], was documented in the article
titled “Traffic Images Captured from UAVs for Use in Training Machine Vision Algorithms
for Traffic Management” [23]. The second dataset, “Roundabout Aerial Images for Vehicle
Detection” [24], was annotated using the PASCAL VOC XML technique, unlike the first
dataset, which used YOLO annotation. The first dataset contains 15,070 images, and the
second contains 15,474, resulting in a combined dataset of 30,544 images. Table 2 provides
a breakdown of the objects (car and motorcycle classes) found in each of the datasets.
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Table 2. Breakdown of the datasets used [23,24].

Dataset Cars Bikes Total

Traffic Images Captured from UAVs for Use in
Training Machine Vision Algorithms 137,602 17,726 155,328

Roundabout Aerial Images for Vehicle Detection 236,850 4899 241,749
Total 374,452 22,625 397,077

To unify these datasets into a common format, a Python script was created to convert
PASCAL VOC XML annotations to the YOLO format. For dataset partitioning, four main
strategies were explored:

1. Random distribution: This strategy involves dividing the dataset randomly, without
considering the relationship between frames;

2. Frame reservation by video: In this approach, 20% of the frames from the same video
were set aside for testing and validation, ensuring that temporal coherence in the
training data is maintained;

3. Selection of final frames: This strategy involves reserving the final 20% of frames
from each video, as these may contain more challenging situations for computer
vision models;

4. Frame selection per second: This strategy, also known as subsampling, involves
retaining only 1 frame out of every 24, equivalent to one frame per second, and then
using random distribution for data partitioning.

This variety of approaches provides a wide range of test scenarios and enables a
more robust and representative evaluation of the computer vision models being developed.
After various tests and research, the decision was made to opt for the last approach (frame
selection per second), as it, despite providing the fewest images for training, also exhibited
the best model generalization. This resulted in 1269 images for training: 625 from the first
dataset, and 644 from the second.

To facilitate data management, RoboFlow [39], a tool that allows for advanced prepro-
cessing such as image augmentation was used. Image augmentation generally helps models
learn more effectively, achieving better results [40,41]. Image augmentation techniques
were chosen while preserving image coherence and included the following:

• 90◦ clockwise and counterclockwise rotation of the image;
• 45◦ clockwise and counterclockwise rotation of the image;
• 90◦ clockwise and counterclockwise rotation of objects within the image.

The final image number was thus increased to 3033 (1493 from the first dataset and
1540 from the second). These images are of high quality and incorporate a large number of
targets (37,289 vehicles and 2253 motorcycles), making them suitable for training algorithms
that can be executed on the selected hardware.

2.3.2. Model Training

The training process for artificial intelligence models was conducted using the clus-
ter at the European University of Madrid, which provided the necessary computational
resources for high-performance model training. Two frameworks were employed:

1. TensorFlow: An open-source framework developed by the Google Brain Team, Ten-
sorFlow is widely used in various fields that require intensive computation operations
and has become a standard in the machine learning and artificial intelligence field [42].
TensorFlow was used to implement and train EfficientDet-Lite architectures (see Fig-
ure 2), which are object detection models known for their efficiency and performance
in terms of speed and accuracy [25]. These models were specifically selected for their
compatibility with the chosen low-power computers, including Raspberry Pi 3B+,
Raspberry Pi 4, Google Coral Dev Board, and Jetson Nano;
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2. PyTorch: Another open-source machine learning framework primarily developed
by Facebook’s artificial intelligence research group, PyTorch is known for its user-
friendliness and flexibility, allowing for more intuitive development and easier debug-
ging of machine learning models. PyTorch was used to train models with the YOLO
and DETR architectures. YOLO is a popular real-time object detection algorithm
known for its speed and accuracy. Unlike other object detection algorithms, which
analyze an image in multiple regions and perform object detection in each region
separately, YOLO conducts object detection in a single pass, making it particularly fast
and suitable for real-time applications [43]. On the other hand, DETR is an architecture
developed by Facebook AI that allows for using transformers to train object detection
models [30].
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2.3.3. Model Deployment on Reduced-Board Computers

The selected reduced-board computers for this study include a Raspberry Pi 3B+, a
Raspberry Pi 4, a Google Coral Dev Board, and a Jetson Nano (see Figure 3). These devices,
chosen for their compact size and energy efficiency, have certain hardware limitations.
Therefore, it is crucial for the models developed not only to be accurate but also to have
fast inference capability and perform well on the different boards.
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The model deployment process included compiling the models for each of the different
boards and evaluating their performance on these devices. To achieve this, a script was
developed to measure the frames per second (FPS) at which the board could perform
real-time video inference. Depending on the board’s architecture, the model had to be
consistent. For instance, to infer on the Google Coral, the models needed to be compiled
to run on the tensor processing unit (TPU). For other platforms, such as Raspberry Pi, the
models had to be compiled in a lightweight version compared to the original model (lite
version). This phase presented a significant challenge due to the differences among the
boards and the specific adjustments required for each of them.

2.4. Experiments

In this section, we describe the four experiments conducted in this work, which span
from training times to equipment energy consumption, as well as model metrics and
processing capabilities once the models are deployed on low-power computers.

2.4.1. Training Time

Starting with the dataset created as described in “Dataset generation” (Section 2.3.1),
two training processes were performed for each model. For this purpose, two different
input options were used: (1) the original dataset and (2) the same dataset optimized
before training. For the second case, the training optimizer developed in the paper titled
“Optimization Algorithm to Reduce Training Time for Deep Learning Computer Vision
Algorithms Using Large Image Datasets with Tiny Objects” [45] was used. The use of this
procedure was due to the dataset in this study fitting perfectly with the constraints and
conditions of this algorithm. These constraints, in summary, are as follows [45]:

• Large images such as FullHD, 2K, 4K or even larger and with small objects or “targets”
to detect considering the size of the image;

• Images taken at short intervals;
• Few objects within the image, or the objects are not evenly distributed within the image;
• There are static objects of interest in the image.

The training of the two models using both options yielded the time required for these
trainings for a specific number of epochs, specifically 25 epochs.

2.4.2. Model Metrics

To evaluate the training of the models, three metrics were used: precision, recall,
and mean average precision. These metrics were chosen because they are the most used
within the field of object detection in images [46–48]. The definition of “precision” is the
percentage of true positives obtained [48]. The formula is as follows, where TP represents
true positives, and FP represents false positives:

P =
TP

TP + FP
(1)

On the other hand, “recall” is a metric that analyzes the percentage of true positives
compared to the number of real positives [48]. Its formula is as follows:

R =
TP

TP + FN
(2)

Finally, “mean average precision” (mAP) is used to measure the average precision of
detections across all classes [46,48]. It defines APi as the average precision of the nth class
and N as the total number of classes evaluated [46]. The formula is as follows:

mAP =
1
N

N

∑
i=1

APi (3)
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Figure 4 illustrates these previously explained concepts. Finally, to understand the
results, it is important to explain the concept of “intersection over union” (IoU). This ratio
is used to determine if a prediction is a true positive or a false positive. It is defined as the
overlap between the bounding box inferred by the model and the ground truth bounding
box, divided by their union (see Figure 5). An IoU of 0.5 was used, which is one of the
standards [46,48].
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2.4.3. Deployment Metrics

Once the models were deployed on the different single-board computers, their perfor-
mance on these devices was assessed. The metric used for this assessment was “frames per
second” (FPS). This metric indicates how many images per second the board can process
when applying the model. The higher this number, the closer our product is to real-time
inference. In the case of the Google Coral, models with architectures that are not compatible
with this board were not tested.

2.4.4. Power Consumption

Once the models were deployed on the different single-board computers, their power
consumption was measured. The metric used was watts (W), which indicates how much
power each board consumes when running the model. The higher this number, the more it
affects the UAV’s autonomy, as it consumes part of the energy needed to keep it in flight.



Drones 2023, 7, 682 11 of 18

3. Results

In this section, the results of the four experiments described in “Experiments” (Section 2.4)
are presented.

3.1. Training Times

Table 3 displays the training times of the different models mentioned that were ob-
tained for each model with and without optimized data.

Table 3. Training times with and without data optimization.

Model Epochs Time without
Optimization

Time with
Optimization

Time
Saving

YoloV5n 20 4 h 44 m 40 s 47 m 35 s 16.72%
YoloV5s 20 7 h 18 m 50 s 1 h 5 m 25 s 14.91%
YoloV8n 20 5 h 3 m 20 s 1 h 17 m 20 s 25.49%
YoloV8s 20 7 h 45 m 45 s 1 h 37 m 45 s 20.99%
DETR 20 19 h 45 m 23 h 35 m 119.41%

EfficientDetLite0 20 2 h 7 m 35 s 2 h 44 m 128.54%
EfficientDetLite1 20 2 h 41 m 45 s 3 h 48 m 35 s 141.32%

Figure 6 shows the evolution of metrics throughout the different epochs. It is shown
in both Figure 6a training and Figure 6b validation.
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3.2. Model Metrics

Table 4 shows the selected metrics for each of the models.

Table 4. Metrics of the models (accuracy, recall and mAP).

Model Precision Recall mAP50 mAP50-95

YoloV5n 72.9% 19.4% 16.2% 3.3%
YoloV5s 46.3% 31.4% 26.9% 6.5%
YoloV8n 83.3% 72.6% 80% 44.9%
YoloV8s 84.8% 70.1% 77.4% 44.0%
DETR - 28.6% 55.5% 21.2%

EfficientDetLite0 - 19.3% 27.4% 7.6%
EfficientDetLite1 - 23.5% 36.8% 10.5%
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3.3. Deployment Metrics

Table 5 provides a detailed overview of the results obtained after deploying the models
on the different single-board computers. Specifically, it presents the average FPS obtained
on each device compared to the UEM cluster as the reference equipment.

Table 5. Average FPS achieved on different single-board computers by model.

Model Cluster
UEM (FPS)

Raspberry Pi
3B+ (FPS)

Raspberry
Pi 4 (FPS)

Jetson Nano
(FPS)

Google
Coral (FPS)

YoloV5n 130.44 0.46 1.3 14.7 -
YoloV5s 114.72 0.19 0.73 4.8 -
YoloV8n 75.08 0.27 0.76 6.2 -
YoloV8s 72.24 0.09 0.44 3.3 -
DETR 12.26 0.01 0.05 0.03 -

EfficientDetLite0 9.08 1.14 2.92 2.04 6.7
EfficientDetLite1 4.7 0.58 1.63 1.14 5.4

3.4. Energy Consumption

Table 6 provides a breakdown of the results obtained for power consumption.

Table 6. Power consumption of the reduced-board computers.

Reduced-Board
Computer

Idle Execution
Voltage Current Power Voltage Current Power

Raspberry Pi 3B+ 5.2 V 0.45 A 2.34 W 5.2 V 0.79 A 4.1 W
Raspberry Pi 4 5.4 V 0.35 A 1.89 W 5.4 V 0.66 A 3.56 W

Jetson Nano 5.4 V 0.78 A 4.2 W 5.4 V 1.9 A 10.2 W
Google Coral 5.2 V 0.95 A 4.94 W 5.2 V 1.2 A 6.24 W

4. Discussion

Given the results obtained, determining the best hardware–software solution for
implementing onboard processing in UAVs for intelligent traffic management is challenging.
It heavily depends on specific needs and budget constraints. In this chapter, we describe
some characteristics of the best combinations found from a hardware perspective. It is
important to note that the results obtained from cluster execution are not relevant since
there is a clear disparity in computational processing power. This high-performance cluster
was used for the training of the different models, a task impossible to perform with the
single-board computers. In addition, the advantage of using this equipment compared
to a conventional PC is that it greatly reduces the time required for this phase. Given its
high capacity, it was also used to measure the FPS in deployment of the different models.
This helped us to establish a baseline in the comparison with the performance of the rest of
the boards.

The metrics obtained in the cloud only served as an index of the correct functioning of
the networks and were not used for direct comparison. With that in mind, we can evaluate
the solutions as follows:

• Raspberry Pi: This is one of the least-power-consuming solutions as well as being the
lightest hardware; it can run neural networks of various types, although its FPS is one
of the slowest. Raspberry Pi would be the best choice for PyTorch -type networks, such
as Yolo (YoloV5n, YoloV5s, YoloV8n, and YoloV8s), where power consumption and
weight are critical, for example, to be employed in UAVs. If, in addition, we can work
with small images such as those for classification (and not recognition), the Raspberry
Pi is the best choice;

• Jetson Nano: it is the most powerful option in PyTorch -like network processing but
outperforms the Raspberry Pi in power consumption and weight. The number of FPS
is considerably higher, which makes it a better choice if (1) processing is a key factor,
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such as for object recognition, which needs in an image instead of classification, as it
not only processes faster but also performs better with larger images, and if (2) power
consumption and weight are not a critical factor, such as for images in static cameras
(gantries or surveillance cameras);

• Google Coral: This hardware is one of the most powerful in processing capacity, with
a slightly higher power consumption than the rest of the boards and with a weight
between that of the two previous boards. However, this board has an important
limitation: it has no GPU but TPUs (tensor processing unit), which makes it very
inefficient for PyTorch-type networks but extremely efficient for TensorFlow networks
such as Effi-cientDetLite0 or Effi-cientDetLite1 networks. The FPS difference is 500%
faster compared to its competitors, which makes it the most suitable board when
processing time is critical, and its weight makes it a good choice for onboard UAVs,
while its power consumption greatly limits its working autonomy.

Another crucial factor to consider is the inference results. In this aspect, it is relatively
straightforward to draw conclusions about the best options. On one hand, YOLO-based
models such as YOLOv5n, YOLOv5s, YOLOv8n, and YOLOv8s demonstrate a trend
towards higher precision and mAP50 compared to other architectures. YOLOv8n and
YOLOv8s, in particular, stand out with precisions of 83.3% and 84.8%, respectively, and
mAP50 values of 80.0% and 77.4%. However, there is some variability in recall, indicating
that these models might struggle to detect all relevant objects in certain circumstances.

In contrast, the DETR model shows a recall of 28.6% and an mAP50 of 55.5%, which,
while lower than the mentioned YOLO versions, still represents respectable performance.
The EfficientDetLite0 and EfficientDetLite1 models have lower recall values and mAP50
scores of 27.4% and 36.8%, respectively.

However, it is important to interpret these data correctly. Remember that the images
being processing are of HD size (1920 × 1080 px) and the objects to recognize range from
medium-sized (trucks = 200 × 200 px) to small-sized (pedestrians = 30 × 30 px). For
YOLO-based networks, the results are accurate, with precision around 84%. In contrast,
the DETR network, although it has a lower recall rate mainly due to not detecting many
objects, is influenced by the image manipulation before being processed by the network.
The image is resized to 640 × 640 pixels, which is too small for some targets (pedestrians
and motorcycles) that need to be detected. This resizing causes these objects to be too small
for the network to detect, while larger targets (cars, trucks, etc.) remain recognizable.

On the other hand, TensorFlow-based networks (EfficientDetLite0 and Efficient-
DetLite1) face a similar issue but to a greater extent due to the network’s architecture.
These models cannot process images larger than 640 × 640 on Google Coral due to memory
limitations. Consequently, their effectiveness in inference is significantly lower because the
network was trained with original-sized images.

It is worth noting that this article focuses on the observation and surveillance of traffic
from UAVs equipped with high-resolution cameras capturing objects at a certain distance.
Therefore, the images that need to be inferred are similar to the images analyzed with
the different boards. As a result, we can determine that Raspberry Pi or Jetson Nano
with YOLO could process these images without the need for prior preprocessing and at
high resolution. However, this would lead to a decrease in the frames per second (FPS)
proportional to the input image size.

On the other hand, Google Coral with EfficientDetLite networks requires a preprocess-
ing step involving tiling or subdividing the input images without reducing their size. This
method allows for leveraging the high FPS of Google Coral, but processing a high-resolution
image would involve breaking it into smaller images such as 3 × 3 or 4 × 4 sub-images.
As a result, the calculated FPS would need to be adjusted accordingly to account for the
processing of the original high-resolution images.

To consolidate part of the data obtained in the experiment, we created a new table that
represents power consumption per inferred frame (Table 7). It is essential to generate a
more comprehensive table that also considers the energy consumption of a UAV due to the
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added hardware weight. However, this calculation is highly dependent on the type and
configuration of the UAV and falls outside the scope of this experiment.

Table 7. Relationship between power (watts) consumed by the reduced-board computers per FPS
inferred for the differently constructed models. The results are displayed with a color gradient from
green (best) to red (worst).

Model Raspberry Pi 3B+ Raspberry Pi 4 Jetson
Nano

Google
Coral

YoloV5n 8.93 2.74 0.70 -
YoloV5s 21.62 4.88 2.14 -
YoloV8n 15.21 4.69 1.65 -
YoloV8s 45.64 8.10 3.11 -
DETR 410.80 71.28 342.00 -

EfficientDetLite0 3.60 1.22 5.03 0.93
EfficientDetLite1 7.08 2.19 9.00 1.16

From this comparison of watts-FPS, it can be seen that the best board/model combina-
tion is Jetson Nano with Yolo, followed by Google Coral with EfficientDetLite. In contrast,
the DETR configuration with Raspberry Pi 3B+ is the worst by a significant margin. In fact,
DETR consistently yields the worst results overall.

The amount of RAM (random access memory) in a computer can indeed affect both
computation time and power consumption, although the impact may vary based on the
specific tasks and applications being run.

If we focus the analysis on the case described in this article, namely the processing
time and energy consumption, RAM is an influential factor in all cases. However, in some
instances, it has a lesser influence compared to others. Considering the case of the Intel
Coral board running EfficientDetLite-type networks, the amount of memory needed is
sufficient to support the operating system and applications supporting the neural network
(communications, image capture, disk storage, etc.). This is because the image processing by
the neural network is entirely carried out on the TPU, so the efficiency in image processing
is summarized by the efficiency of this component. In this case, all Intel Coral boards have
the same TPU regardless of the RAM they incorporate.

The same situation applies to the Jetson Nano board running PyTorch-type networks
(like YOLO), as these networks run entirely on the board’s GPU. Once again, all Jetson
Nano cards incorporate the same GPU. In contrast, boards without specific GPUs or TPUs,
such as Raspberry Pi 3 and 4, process information in the main microprocessor and memory.
For these boards, it is a very relevant factor since these hardware resources are not only
allocated to image processing by the neural network but are also shared with the operating
system and other tasks of running applications. For these cards, RAM will significantly
affect their efficiency, especially at the lower limit, as insufficient RAM will cause the
operating system to utilize virtual memory, which involves storing data on the slower
storage. Accessing data from virtual memory is much slower than accessing it from RAM,
leading to increased computation time. On the contrary, an excess of unused RAM would
result in higher energy consumption, but this consumption is negligible compared to the
rest of the energy expenditures. Therefore, this factor is not considered in the analysis.

5. Conclusions

Various lines of work were conducted in this study, including a review of the state of
the art, model training, and their implementation, among others. All of these efforts serve
a common goal: to implement object recognition models on single-board computers and
determine which combination of board and model is the most suitable for the specific use
case of traffic management assistance, particularly for autonomous vehicles.

As demonstrated in the preceding sections, numerous models and boards were tested,
each with its unique characteristics. The YOLO models, especially version 8, exhibited
strong performance in terms of accuracy and acceptable detection speed. However, their
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implementation was restricted on certain boards due to limitations inherent to their ar-
chitectures, such as the Google Coral, which achieved the best processing speed but also
presented the most limitations.

On the other hand, the EfficientDetLite models were successfully deployed on the
Google Coral. While their model metrics were inferior to other models, they demonstrated
superior inference capability thanks to their compatibility with a TPU version of the
mentioned board.

These results underline the importance of considering both the performance metrics
of object detection models and the limitations of the hardware during model selection for
a computer vision project. Striking a balance between model performance and hardware
compatibility is crucial for the successful execution of such projects.

Based on these results, two optimal model–board combinations were selected for the
project’s objectives. On one hand, a combination with better accuracy but lower inference
speed includes the YoloV8n model with the Raspberry Pi 4. On the other hand, the combi-
nation with much higher inference speed but lower accuracy involves the EfficientDetLite1
model with the Google Coral board.
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AI Artificial Intelligence
CNN Convolutional Neural Networks
COVID-19 COronaVIrus Disease 2019
CUDA Compute Unified Device Architecture
CVAT Computer Vision Annotation Tool
DDR Double Data Rate
DETR DEtection TRansformer
FP False Positive
PFS Frames Per Second
GPU Graphics Processing Unit
HD High Definition
IDE Integrated Development Environment
IoD Internet of Drones
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IoU Intersection over Union
mAP mean Average Precision
microSD micro Secure Digital
PASCAL Pattern Analysis, Statistical modeling, and Computational Learning
PC Personal Computer
RAM Random Access Memory
TP True Positive
TPU Tensor Processing Unit
UAV Unmanned Aerial Vehicle
VOC Visual Object Classes
XML Extensible Markup Language
YOLO You Only Look Once
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