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In this work, we have developed a one-dimensional tight-binding model to investigate the conductivity of 
tunneling through a quasiperiodic or slowly-varying potential. Our study focuses on the hopping tunneling 
properties of a tight-binding model in which the on-site potential is replaced by both quasiperiodic and periodic 
functions. By comparing the hopping transport in scenarios involving a periodic potential and an slowly-varying 
model, the latter being the only known case of a 1D potential with a mobility edge and a metal-insulator 
transition, we gain valuable insights. In our analysis, we consider a proposed device situated between two 
quantum reservoirs in both quasiperiodic and periodic cases. Remarkably, we find that the tunnel transport 
through the lattice completely diminishes at the band center. This intriguing phenomenon is likely to hold 
fundamental importance in the interpretation of experimental data.
1. Introduction

Since the seminal work of Anderson [1], the investigation of quan-

tum localization has remained a central paradigm in Condensed Mat-

ter Physics. Despite extensive studies of the localization phenomenon, 
many open questions persist in this research field. Two fundamental 
models, the Anderson model and the Aubry-André incommensurate po-

tential, deserve mention. In the Anderson model, disorder manifests 
as random amplitudes in the on-site positions of a lattice. Conversely, 
in the Aubry-André model [2], disorder arises from a potential func-

tion that is incommensurate with the underlying lattice. Localization 
effects in this scheme can be attributed to both the destructive interfer-

ence associated with multiple scattering processes of a particle traveling 
through an incommensurate medium and the spectral properties of its 
Schrödinger equation [3]. In recent times, this subject has garnered 
significant attention, primarily fueled by the prospects of pioneering 
experimental research employing optical lattices and cold atom gases 
[4–7]. An intimately related and intriguing localization problem is pre-

sented by the Aubry-André model in optical lattices, which exhibits 
a metal-insulator transition when the strength of the periodic poten-

tial is varied [8–11]. Utilizing ultracold bosons [12,13], researchers 
have delved into the study of delocalization effects in the Aubry-André 
model.

Optical lattices, constructed from light, serve as crystalline struc-

tures capable of trapping atoms at extremely low temperatures [14]. 

* Corresponding author.

Unlike conventional solid-state crystals, an optical lattice arises from 
the interference of laser beams, boasting dimensions approximately 
1,000 times larger. Within this lattice, trapped atoms emulate the 
behavior of electrons within a solid, exhibiting the ability to tunnel 
through potential barriers formed by the laser beams.

The potential of an optical lattice emerges through the coherent 
interaction of two laser beams propagating in opposing directions. De-

pending on the light frequency, ultracold atoms can be confined to 
specific spatial regions. One of the most valuable applications of optical 
lattices lies in their capacity to realize simplified models of Condensed 
Matter Physics within experimental settings. Ultracold gas experiments 
benefit greatly from optical lattices as they permit easy control of cru-

cial factors like interatomic interaction and band structure by manipu-

lating external laser beams [15–18].

In addition to optical lattices, solid-state superlattices have garnered 
significant attention in recent years due to their potential applications 
as novel optical and electrical devices [19–23]. A solid-state superlattice 
structure involves the growth of two different materials in alternating 
layers, where the lattice constant of both materials must closely match 
to achieve a crystalline structure. One layer of the material acts as a po-

tential barrier, while the other functions as a quantum well within the 
structure. The coupling between these quantum wells can give rise to 
an artificial conduction miniband. Recent studies have inferred the exis-

tence of phonon Anderson localization in Si/Ge aperiodic superlattices 
through overall thermal conductivity behaviors [24–26]. Hu et al. [25]
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Fig. 1. An illustration of a one-dimensional periodic and quasiperiodic potential 
placed between two reservoirs. (a) Periodic case. (b) Slowly-varying potential 
or aperiodic case. For an optical lattice, the end sites are driven by ultracold 
atomic reservoirs. The quasiperiodic potential shows a slow variation with the 
number of lattice sites. (c) Quasiperiodic potential in a solid-state superlattice 
case. An external electric field is applied between the contacts.

observed a decreasing trend in the overall thermal conductivity with 
respect to device length, indicating the potential presence of phonon 
Anderson localization in solid-state superlattices.

However, observing Anderson and Aubry-André localizations in real 
materials, particularly superlattices, presents challenges due to the sup-

pression of disorder effects caused by various quantum phenomena 
[4]. Furthermore, creating superlattice potentials with a slowly-varying 
superlattice period proves to be highly challenging. The growth of ma-

terials with such a slowly-varying superlattice period to realize func-

tional devices within a laboratory setting is a formidable task [27,28]. 
As a result, investigating alternative approaches to study localization 
phenomena becomes essential, allowing us to gain insights into these 
intriguing phenomena in a more controllable and experimentally acces-

sible manner.

In the experimental setup, an optical lattice is incorporated between 
two cold-atom reservoirs to investigate the conductivity of ultracold 
atoms through a quasiperiodic potential (Fig. 1). By imposing a chem-

ical potential difference between the end sites, atomic transport is 
induced throughout the system [29]. Similarly, in the superlattice sce-

nario, a layered material is positioned between two electronic contacts, 
and an external electric field is applied between the electrodes (Fig. 1). 
In both cases involving ultracold atoms and electrons, the quasiperi-

odic potential is inserted between two atomic or electronic reservoirs, 
respectively.

In order to accurately characterize the current flow within such de-

vices, it is imperative to incorporate quantum transport phenomena 
between the contacts and the lattice. Initially, electrons or cold atoms 
from the reservoir can tunnel through the lattice potential barriers as a 
first approximation (Fig. 1). The tunneling amplitude is directly related 
to the degree of wave function overlap between the reservoir and the 
quasiperiodic wave functions. In this context, we can adopt a hopping-

tunneling model to effectively describe the injection of electric charge 
(or cold atoms) at a device contact.

Until now, the existence of a metal-insulator transition in exper-

imental studies remains elusive. Moreover, an unsolved and crucial 
challenge in the research area revolves around assessing the hopping 
tunneling between an aperiodic potential and the electron or cold-atom 
reservoirs. The role of transport tunneling in these experiments cannot 
be underestimated. In this work, we aim to evaluate the conductivity of 
cold atoms or electrons through a slowly-varying potential by determin-
2

ing the average extension of eigenstates near the lattice borders. We will 
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compare our results with Lyapunov exponent calculations. Through this 
analysis, we will demonstrate that hopping tunneling plays a pivotal 
role in comprehending experiments involving quasiperiodic potentials. 
By shedding light on these aspects, we strive to contribute valuable 
insights into the fundamental mechanisms underlying the behavior of 
quantum particles in the presence of quasiperiodic potentials.

2. Model

In this work, the physical systems under study are represented by 
the following Hamiltonian:

𝐻 =
𝑁−1∑
𝑖=1

𝑡
( |𝑖 >< 𝑖+ 1| + |𝑖− 1 >< 𝑖| )+ 𝑉𝑖 |𝑖 >< 𝑖| , (1)

Here, 𝐻 describes a single-particle moving on a one-dimensional lattice 
with a 𝑡 matrix element connecting each lattice site to its two nearest 
neighbors. The term 𝑉𝑖 in Eq. (1) introduces a modulation of the on-site 
energies with amplitude 𝑉𝑖.

Essentially, Eq. (1) corresponds to the tight-binding model applied to 
a chain of ultracold atoms or quantum wells in a solid-state superlattice 
(see Fig. 1). The tight-binding equation is given by:

𝑡 (𝑢𝑛−1 + 𝑢𝑛+1) + 𝑉𝑛𝑢𝑛 =𝐸𝑢𝑛 , (2)

where 𝑢𝑛 represents the amplitude of the carrier wave function at the 
𝑛-th lattice site, and 𝑉𝑛 is the on-site potential. In this work, we consider 
two different models.

The first on-site potential, denoted as 𝑉𝑛, is an Aubry-André model. 
We shall consider a variation of the original Aubry-André potential 
proposed by Das Sarma et al. [27]. The original Aubry-André model 
presents only a metal-insulator transition. The model proposed by Das 
Sarma et al. [27] exhibits a mobility edge and a metal-insulator transi-

tion with a gapless Schrödinger spectrum.

The most important characteristic of this potential is that it exhibits 
a metal-insulator transition for 𝜆 < 2 and 𝜈 < 1. The mobility edges are 
located at energies 𝐸𝑐 = ±|2 − 𝜆|. Eigenstates at the band center, |𝐸| <|𝐸𝑐 |, are all extended, whereas the band-edge states (|𝐸| > |𝐸𝑐 |) are all 
localized. Such a slowly-varying potential exhibits neither periodic nor 
random characteristics and can be expressed as follows:

𝑉𝑛 = 𝜆 cos(𝜋𝛼𝑛𝜈 ) (3)

where 𝛼 is a real number, 𝜆 represents the strength of the potential 
(0 ≤ 𝜆 ≤ 2), and 𝜈 is a parameter ranging between 0 and 1. As depicted 
in Fig. 1, the potential varies with the number of lattice sites. If 𝜈 = 1 in 
Eq. (3), we have an almost periodic potential.

We should point out that 𝜋𝛼 has been taken to be equal to a real 
number in this work. Taking into account that 𝑛 is an integer and 𝑁
a finite number, when 𝜈 = 1, the potential is (almost) periodic. Strictly 
speaking, it is not periodic. Conversely, when 𝜈 < 1, the potential will 
be referred to in the manuscript as slowly-varying, quasiperiodic, ape-

riodic, or Aubry-André type.

Remarkably, such a slowly-varying model represents the sole in-

stance of a one-dimensional tight-binding potential featuring a metal-

insulator transition with mobility edges located at 𝐸𝑐 = ±|2 − 𝜆|, where 
𝜆 is the potential perturbation.

The original Aubry-André potential is 𝑉𝑛 = 𝜆 cos(𝜋𝛼′𝑛), where 𝛼′ is 
an irrational number (𝛼′ = 1 +

√
5) and 𝜆 represents the strength of 

the potential. When 𝛼′ is an irrational number, Bloch’s theorem is no 
longer applicable, and the calculation of the spectrum is not trivial. The 
eigenvalue spectrum is fractal, and the famous Hofstadter butterfly is 
obtained [27].

A related quantity, the normalized density of states, denoted by 
𝜌(𝐸), can now be introduced:

𝜌(𝐸) = 1
𝑁∑

𝛿(𝐸 −𝐸 ) , (4)

𝑁

𝑗=1
𝑗
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where 𝑁 is the number of sites. The density is normalized to 1. To cal-

culate the density of states, we approximate 𝛿(𝐸−𝐸𝑗 ) with a normalized 
Gaussian function [30–32]:

𝛿(𝐸 −𝐸𝑗 ) =
1

𝜎
√
2𝜋

exp

[
−
(𝐸 −𝐸𝑗 )2

2𝜎2

]
. (5)

In this work, 𝜎 is taken to be equal to 𝜎 = 0.015. Here, 𝐸𝑗 represents the 
obtained eigenvalues with 𝑗 ∈ 1,2, ...,𝑁 .

In real materials, the Lyapunov exponent 𝛾(𝐸) has been widely used 
to characterize extended and localized quantum states. The Lyapunov 
exponent is defined as the inverse of the localization length [30–32], 
providing insights into the asymptotic behavior of the eigenstates:

𝛾(𝐸𝑗 ) =
1

𝑁 − 1
∑
𝑗≠𝑙

𝑙𝑛 |𝐸𝑗 −𝐸𝑙|, (6)

where 𝑁 represents the number of sites in the lattice. For extended 
states and below a mobility edge, 𝛾(𝐸𝑗 ) = 0. In contrast, in a localized 
state with energy 𝐸𝑗 , 𝛾(𝐸𝑗 ) possesses a finite value.

Solving Eq. (2) provides different eigenvectors 𝑢𝑛(𝐸𝑗 ) corresponding 
to each distinct eigenvalue 𝐸𝑗 , where 𝑗 ∈ 1,2, ...,𝑁 and 𝑛 ∈ 1,2, ...,𝑁 . 
The obtained eigenvectors are normalized, i.e.,

𝑁∑
𝑛=1

|𝑢𝑛(𝐸𝑗 )|2 = 1 . (7)

In our model, the obtained eigenvalues are ordered in energy (from 
minimum to maximum energy). Specifically, 𝑗 = 1 corresponds to 𝐸1, 
which represents the eigenvalue with the minimum energy, and 𝐸𝑁

corresponds to the maximum energy eigenvalue, with 𝑗 =𝑁 .

It is noteworthy that a unique property of the Aubry-André model is 
its manifestation of a metal-insulator transition. One method to demon-

strate this is by calculating the inverse participation ratio (IPR) of all 
eigenstates. This quantity is specifically designed to characterize the 
localization properties of a cold-atom eigenstate. The IPR vanishes for 
spatially extended states while remaining finite for localized states [33]. 
Additionally, a quantity denoted as 𝜎𝑐 , accounting for the average ex-

tension of eigenstates in bichromatic optical lattices, has been utilized 
by Boers et al. [34].

These quantities and indices mentioned above provide an evaluation 
of the wave function extension across all sites of an Aubry-André model. 
They account for the amplitude 𝑢𝑛 of the wave function at each lattice 
site for every eigenstate. However, we acknowledge that the 𝑢𝑛 values 
near the reservoirs may significantly influence the hopping tunneling 
process.

With this consideration, we introduce the number of states  at 
each 𝑖-lattice site within a range of energies:

𝑛(𝑚𝑖,𝑚𝑓 ) =
𝑚𝑓∑
𝑗=𝑚𝑖

|𝑢𝑛(𝐸𝑗 )|2 (8)

in this work. Here, 𝑗 ranges from 𝑚𝑖 to 𝑚𝑓 , with the maximum value for 
𝑛 at an 𝑛-lattice site being 𝑁 , where 𝑗 ∈ 1,2, ...,𝑁 . Within a defined 
energy interval (𝑚𝑖, 𝑚𝑓 ), 𝑛 represents the sum of probabilities of find-

ing an electron or ultracold atom at an 𝑛-lattice position. In other words, 
𝑛 is proportional to the carrier probability densities |𝑢𝑛|2 within the 
specified energy range.

The eigenvalues are ordered in energy. Every 25 consecutive states 
are grouped to calculate a 50 value. The energy associated with such 
a 50 quantity is the eigenenergy of the first element of the list. For 
example, 𝐸1 is the energy associated with the 𝐸1, ...,𝐸25 group and so 
on. This way, the energy of each 25 consecutive eigenvalues is approx-

imated by a unique value. The approach has been tested considering 
groups of 50 and 100 elements as well. We achieved convergence for 
25 eigenvalues with an error of less than 5%. In Figs. 9 and 10, we have 
3

plotted 20 points for the 50 value and 𝛾(𝐸) for −2 < 𝐸 < 2.
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Fig. 2. Density of states versus energy for a periodic potential (𝜆 = 0) and for 
an Aubry-André potential (𝜆 = 0.4). We have taken 𝜋𝛼 = 0.4 and 𝜈 = 0.7 for the 
slowly-varying potential in Eq. (3). The mobility edge is at 𝐸 = ±1.6 in the 
quasiperiodic case. In the periodic case, 𝜆 is set to 𝜆 = 0.

Fig. 3. Lyapunov exponent versus energy for a periodic potential (𝜆 = 0) and for 
an Aubry-André model (𝜆 = 0.4). In the aperiodic case, we have taken 𝜋𝛼 = 0.4
and 𝜈 = 0.7. The metal-insulator transition occurs at 𝐸 = ±1.6 in the slowly-

varying case.

3. Results

The Hamiltonian described in Eq. (1) is solved to obtain the eigenen-

ergies and eigenvalues. Fig. 2 illustrates the density of states versus 
energy for an slowly-varying model (𝜆 = 0.4) and a periodic potential 
(𝜆 = 0). In the quasiperiodic case, we set 𝜈 = 0.7 and 𝜆 = 0.4. The figure 
clearly exhibits the existence of mobility edges in the system, where the 
singular points of the density of states are located at 𝐸𝑐 = ±1.6. Addi-

tionally, Fig. 3 shows the Lyapunov exponent versus energy, demon-

strating that the mobility edges are also situated at 𝐸𝑐 = ±1.6 in the 
quasiperiodic case (𝜈 = 0.7). When the energy passes through the mo-

bility edges, a dramatic change is observed.

For a free-particle model (𝜆 = 0), the maximum and minimum eigen-

values are 2𝑡 and −2𝑡, respectively. However, Fig. 2 illustrates a finite 
value for the density of states for |𝐸| > 2𝑡. We observe two tails in the 
density of states at 𝐸 = ±2𝑡. This numerical effect can be explained by 
considering that Eqs. (4) and (5) were used to construct our density 
of states. It should be noted that a normalized Gaussian function was 
employed for each eigenvalue. Consequently, states near the ±2𝑡 band 

limit contribute to the tails of the density of states. Fig. 2 also presents 
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Fig. 4. 𝑛(𝑚𝑖, 𝑚𝑓 ) versus crystal lattice position (𝑛). The 𝑚𝑖 and 𝑚𝑓 values have 
been taken to be equal to 1 and 100, respectively. In the Aubry-André model: 
𝜋𝛼 = 0.4, 𝜆 = 0.4 and 𝜈 = 0.7.

Fig. 5. 𝑛(𝑚𝑖, 𝑚𝑓 ) versus crystal lattice position (𝑛). The 𝑚𝑖 and 𝑚𝑓 values have 
been taken to be equal to 101 and 200, respectively. In the Aubry-André model: 
𝜋𝛼 = 0.4, 𝜆 = 0.4 and 𝜈 = 0.7.

a slowly-varying potential with 𝜆 = 0.4. In this case, it is clearly shown 
that the absolute band edges are located at 𝐸 = ±(2 + |𝜆|).

Fig. 3 also displays Lyapunov exponent values greater than zero 
for a periodic potential (𝜆 = 0) where all states are extended. This 
phenomenon arises because 𝛾(𝐸) has been evaluated in places where 
eigenvalues do not exist, such as at |𝐸| > 2𝑡 in the periodic case. This 
occurs because it is possible to replace 𝐸𝑗 with an arbitrary 𝐸 value in 
Eq. (3). This representation provides a better portrayal of the Lyapunov 
exponent, as depicted in Figs. 2 and 3.

Our slowly-varying model exhibits extended states near the band 
center (−𝐸𝑐 < 𝐸 < 𝐸𝑐 ) and localized states at the band edges (|𝐸| >𝐸𝑐 ), 
with mobility edges located at ±𝐸𝑐 = ±(2 − |𝜆|). The absolute band edges 
are at ±(2 + |𝜆|), with the origin of energies taken to be at the band 
center. The slowly varying nature of the potential, defined by Equation 
(3), contributes to the localization or extension of eigenstates due to its 
aperiodic characteristics [30–32].

Fig. 4 presents 𝑛 versus the crystal lattice site (𝑛). For the calcula-

tion, we considered the first 100 eigenvectors and eigenvalues (𝑚𝑖 = 1
to 𝑚𝑓 = 100 in Eq. (8)). The plot demonstrates that 𝑛 has a finite value 
within an energy range at each crystal site. A similar result is obtained 
in the subsequent energy interval (𝑚𝑖 = 101, 𝑚𝑓 = 200) (Fig. 5). In both 
cases (Fig. 4 and 5), 𝑛 does not vanish along the lattice.

However, Fig. 6 shows a distinct outcome. It displays the number 
4

of states versus 𝑛 in the band center for the energy range (201, 300). 
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Fig. 6. 𝑛(𝑚𝑖, 𝑚𝑓 ) versus crystal lattice position (𝑛). The 𝑚𝑖 and 𝑚𝑓 values have 
been set to 201 and 300, respectively. In the Aubry-André model: 𝜋𝛼 = 0.4, 𝜆 =
0.4, and 𝜈 = 0.7. The dashed line represents the left border of the optical lattice. 
The yellow stripe indicates the lattice sites in which the carrier probability 
density vanishes.

Fig. 7. 𝑛(𝑚𝑖, 𝑚𝑓 ) versus crystal lattice position (𝑛). The 𝑚𝑖 and 𝑚𝑓 values have 
been set to 301 and 400, respectively. In the Aubry-André model: 𝜋𝛼 = 0.4, 
𝜆 = 0.4, and 𝜈 = 0.7.

Notably, 𝑛 vanishes in the lattice sites located near the left end site, as 
indicated by a dashed line in Fig. 6. Consequently, hopping tunneling 
between the left reservoir and the crystal potential can be neglected. 
Tunneling transport is proportional to the wave function overlapping 
between reservoir eigenstates and |𝑢𝑛|2, i.e., is proportional to 𝑛.

For the energy intervals (301, 400) and (401, 500), the probability 
density 𝑛 has non-null values at different lattice site positions (Figs. 7

and 8). This phenomenon can be attributed to the asymmetry of the 
potential described by Eq. (3). Figs. 3-8 provide new insights for the 
slowly-varying model, as it is the only known case of a 1D potential 
with a metal-insulator transition and a mobility edge. The carrier prob-

ability density in the lattice sites near the left contact increases with an 
increase in |𝐸|. Conversely, 𝑛 in the lattice positions near the left end 
site decreases as |𝐸| is decreased. The origin of energies is taken to be 
at the band center. It is important to note that the left end site corre-

sponds to the highest value for the potential frequency (see Fig. 1). The 
potential is asymmetric, with 𝜈 < 1 in Eq. (3).

In Figs. 3-8, it is evident that hopping transport from the left reser-

voir (Fig. 1) is forbidden at the band center, around 𝐸 = 0. Surprisingly, 
the Lyapunov exponent indicates that the eigenvectors are extended 

states at the band center (Fig. 3). This discrepancy implies that con-
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Fig. 8. 𝑛(𝑚𝑖, 𝑚𝑓 ) versus crystal lattice position (𝑛). The 𝑚𝑖 and 𝑚𝑓 values have 
been set to 401 and 500, respectively. In the Aubry-André model: 𝜋𝛼 = 0.4, 
𝜆 = 0.4, and 𝜈 = 0.7.

Fig. 9. 50 versus energy for a quasiperiodic potential in an Aubry-André model 
(dots). It is also shown the Lyapunov exponent versus energy (thick line). In 
Eq. (3): 𝜋𝛼 = 0.4, 𝜆 = 0.4 and 𝜈 = 0.7. The dashed lines and the pink stripes 
indicate the metal-insulator transitions and the energy regions in which the tun-

neling current is forbidden, respectively. If 𝛾(𝐸) = 0 or 50 = 0, carrier transport 
through the optical lattice can be neglected.

ductivity through the lattice will be suppressed, as hopping tunneling 
vanishes in the middle of the energy band. To gain a better understand-

ing of this effect, we calculate a local number of states, denoted as 50, 
considering the first 50 lattice sites:

50(𝑚𝑖,𝑚𝑓 ) =
25∑
𝑛=1

𝑛(𝑚𝑖,𝑚𝑓 ) , (9)

where 50(𝑚𝑖, 𝑚𝑓 ) is calculated for each 25 consecutive eigenvalues, 
i.e., (𝑚𝑖, 𝑚𝑓 ) ∈ {(1, 25), (26, 50), (51, 75), ...}.

Fig. 9 shows 50 versus energy for the first 50 lattice sites, along 
with the plot of the Lyapunov exponent versus energy for an slowly-

varying model. We have used 𝜈 = 0.7, 𝜋𝛼 = 0.4, and 𝜆 = 0.4 for this 
calculation. The dashed lines in Fig. 9 represent the mobility edges, 
which are located at 𝐸𝑐 = ±1.6. According to the Lyapunov exponent 
criteria, the eigenstates localized between these dashed lines are ex-

tended states.

However, Fig. 9 clearly demonstrates that 50 vanishes at |𝐸| ∼ 0, 
where the eigenstates are extended. We know that the tunneling trans-

port decreases as we decrease 50. As a result, hopping tunneling 
5

between the left reservoir and lattice states can be neglected at the 
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Fig. 10. 50 versus energy for a periodic potential. The Lyapunov exponent ver-

sus energy is also shown (thick line). In Eq. (3): 𝜋𝛼 = 0.4, 𝜆 = 0.4, and 𝜈 = 1.0. 
The dashed lines and the pink stripes indicate the metal-insulator transitions 
and the energy regions in which the tunneling current is forbidden, respec-

tively. If 𝛾(𝐸) = 0 or 50 = 0, carrier transport through the optical lattice can be 
neglected.

band center. Consequently, the conductivity will be suppressed at en-

ergies around 𝐸 = 0. This effect must be considered in experiments. 
Despite having extended states in the middle of the energy band, elec-

tron or cold-atom conductivity cannot be expected at energies around 
𝐸 = 0 due to the suppression of the tunneling effect. To have a nonzero 
carrier transport through the optical lattice, we need 𝛾(𝐸) = 0 and, si-
multaneously, a finite value for both 50 and 𝜌(𝐸).

Next, we consider a periodic potential with similar characteristics to 
the previously employed slowly-varying potential in this work. Specifi-

cally, 𝜈 = 1.0, 𝜋𝛼 = 0.4, and 𝜆 = 0.4 values have been taken in Fig. 10. In 
Fig. 10, 𝜋𝛼 = 0.4 is a real number, the tight-binding chain is not infinite 
(𝑁 = 500), and 𝑛 is an integer. Strictly speaking, the potential is almost 
periodic.

Fig. 10 presents 50 versus energy in the periodic case, and the 
Lyapunov exponent is also plotted. It is evident that 50 does not vanish 
at the band center, indicating that a finite value for the wave function 
overlap between the reservoir and carrier eigenstates can be expected 
at energies around 𝐸 = 0. Consequently, electrons and ultracold atoms 
initially located in the left reservoir can freely tunnel through the crystal 
potential.

Figs. 9 and 10 demonstrate a fundamental difference between both 
periodic and quasiperiodic cases. For a slowly-varying potential, the 
carrier transport through the device vanishes in the middle of the en-

ergy band. A similar result, as shown in Figs. 9 and 10, has been 
obtained for 𝜈 = 0.6 and 𝜈 = 0.8. Recently, Chakrian et al. [35] stud-

ied metallic-insulator phase transitions in an extended Harper model. 
They used a slowly-varying function with characteristics similar to the 
potential used in this work and observed a metal-insulator transition as 
a function of 𝜈. Taking this into account, we believe that it could be 
interesting to conduct a general study of the tunneling properties as a 
function of the parameter 𝜈 in the near future.

In conclusion, we believe that this effect can be experimentally ob-

served. A solid-state superlattice or an optical lattice can be employed 
to detect the suppression of tunnel transport in the device (Fig. 9). Fig. 1

illustrates the scheme of the detection mechanism, where electrons or 
ultracold atoms can be injected into the device through current con-

tacts. To measure the wave function overlap (i.e., the 50 parameter), 
tunneling experiments through a device with a slowly-varying potential 
can be considered. The measured tunneling current will be proportional 
to the wave function overlap, as predicted by Fermi’s Golden Rule. Con-
sequently, we can measure the current at different 𝐸𝐹 values. When 𝐸𝐹
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matches the band center, a suppression of the tunneling current can be 
expected. Subsequently, electric or atomic currents through the device 
can be measured using any standard technique.

4. Conclusions

In this study, we have investigated the suppression of hopping trans-

port through a quasiperiodic potential when an aperiodic device is 
embedded between two electron or ultracold atom reservoirs. Using 
a one-dimensional tight-binding model, we calculated the local num-

ber of states 50 near one of the contacts. Notably, we found that 
the 50 value near one of the contacts vanishes at energies around 
𝐸 ∼ 0 in an Aubry-André model. To gain more insights, we compared 
the quasiperiodic results with those of a periodic potential exhibiting 
similar characteristics. In the case of a periodic potential, the tunnel 
conductivity in the device remains unaffected. Our findings suggest 
that the suppression of the tunneling effect in the middle of the en-

ergy band can significantly impact the interpretation of experimental 
results. This effect can play a fundamental role in understanding the 
transport properties of the device when a slowly-varying potential is 
employed. On the other hand, in the case of a periodic potential, elec-

tron or ultracold atom conductivity is not suppressed, allowing for freer 
tunneling through the crystal potential. In conclusion, our study sheds 
light on the distinctive behavior of hopping transport in quasiperiodic 
and periodic potentials. Understanding the role of the tunneling effect 
is crucial for the accurate interpretation and design of experiments in-

volving solid-state superlattices or optical lattices. By further exploring 
these phenomena, we can unlock new possibilities for developing novel 
optical and electrical devices based on the peculiar characteristics of 
quasiperiodic potentials.
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