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Summary 31 

Aging is characterized by gradual immune dysfunction and increased risk for many diseases, 32 

including respiratory infections. Genomic instability is thought to play a central role in the aging 33 

process but the mechanisms that damage nuclear DNA in aging are insufficiently defined. Cells 34 

that migrate or reside within confined environments experience forces applied to their nucleus, 35 

leading to transient nuclear envelope (NE) ruptures. NE ruptures are associated with DNA damage, 36 

and Lamin A/C is required to limit these events. Here, we show that Lamin A/C protects lung 37 

alveolar macrophages from NE rupture and hallmarks of aging. Lamin A/C ablation in immune 38 

cells results in a selective depletion of lung alveolar macrophages (AM) and a heightened 39 

susceptibility to influenza infection. Lamin A/C-deficient AM that persist display constitutive 40 

nuclear envelope rupture marks, DNA damage and p53-dependent senescence. In wild-type mice, 41 

we found that AM migrate within constricted spaces in vivo, at heights that induce NE rupture and 42 

DNA damage. AM from aged wild-type mice and from Lamin A/C-deficient mice share an 43 

upregulated lysosomal signature with CD63 expression, and we find that CD63 is required to clear 44 

damaged DNA in macrophages. We propose that induction of genomic instability by NE disruption 45 

represents a mechanism of aging in alveolar macrophages. 46 

  47 
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Introduction 48 

Age is a major risk factor for a large number of diseases including respiratory viral 49 

infections such as influenza virus and SARS-CoV-2 (Schneider et al., 2021). Chronological aging 50 

is characterized by gradual immune dysfunction, which limits protective responses (Nikolich-51 

Žugich, 2018). Studies in genetic models have shown that induction of immune dysfunction can 52 

contribute to organismal aging, in part through inflammation (Desdín-Micó et al., 2020; 53 

Yousefzadeh et al., 2021). At the cellular level, cells accumulate hallmarks of aging which include 54 

genome instability, cellular senescence and altered proteolytic systems (López-Otín et al., 2013). 55 

Genomic instability has been proposed to play a central role in driving the aging process 56 

(Schumacher et al., 2021). However, the intracellular mechanisms that compromise genome 57 

stability during aging in immune cells are ill defined.  58 

Immune cells are highly migratory (Luster et al., 2005) and constantly go through narrow 59 

spaces that lead to cellular deformation (Pflicke and Sixt, 2009; Raab et al., 2016). There is an 60 

emerging recognition that genome instability can be driven by mechanical forces imparted on the 61 

nucleus. Constricted or confined microenvironments in vivo exert pressure on the cells that migrate 62 

through or reside within these spaces (Garcia-Arcos et al., 2019). These forces can deform the 63 

nucleus – the largest and stiffest organelle in the cell (Nader et al., 2021a) – leading to transient 64 

nuclear envelope ruptures (Denais et al., 2016; Irianto et al., 2017; Raab et al., 2016). These 65 

ruptures cause DNA damage as a result of compromised nuclear compartmentalization (Cho et al., 66 

2019; Denais et al., 2016; Earle et al., 2020; Irianto et al., 2017; Raab et al., 2016; Shah et al., 2021; 67 

Xia et al., 2018). The consequences of nuclear envelope rupture-induced DNA damage are largely 68 

unknown and demonstrate cell-type specificity. It induces, for instance, senescence in a non-69 

transformed epithelial cell line, while it promotes tumor cell invasion in a breast cancer model 70 

(Nader et al., 2021b). Nuclear envelope rupture also exposes genomic DNA to the cytosol, which 71 
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recruits the interferon-inducing cytosolic DNA sensor cGAS (Denais et al., 2016; Raab et al., 72 

2016). Several mechanisms keep cGAS activation in check following nuclear envelope rupture 73 

(Gentili et al., 2019; Guey et al., 2020; Lan et al., 2014), thereby limiting interferon responses that 74 

can themselves alter genomic stability (Banerjee et al., 2021; Moiseeva et al., 2006; Morales et al., 75 

2017). Among immune cells, nuclear envelope rupture has been observed in neutrophils and 76 

dendritic cells in vitro (Raab et al., 2016; Thiam et al., 2020). However, the in vivo occurrence and 77 

consequences of nuclear envelope rupture in the immune system are not known. 78 

The Lamin meshwork, composed of Lamin A/C, B1 and B2, provides essential mechanical 79 

protection of the nucleus (De Vos et al., 2011; Vargas et al., 2012). During migration of cell lines 80 

in confined spaces in vitro, Lamin A/C is required to limit nuclear envelope rupture, DNA damage 81 

and cell death (Denais et al., 2016; Raab et al., 2016). In tissues, Lamin A/C was shown to protect 82 

against nuclear envelope rupture in the context of the beating heart and skeletal muscles, that are 83 

mechanically strained tissues (Cho et al., 2019; Earle et al., 2020). In humans, mutations in the 84 

Lamin A/C gene cause diverse and severe disease manifestations, including accelerated aging 85 

phenotypes, and some of these mutations have been associated with decreased genome stability 86 

and increased nuclear envelope rupture (De Vos et al., 2011; Earle et al., 2020). In immune cells, 87 

Lamin A/C expression is regulated and impacts immune functions in disease contexts (Saez et al., 88 

2020). Whether Lamin A/C provides protection against aging in the immune system is not known.  89 
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Results 90 

Lamin A/C is required to maintain alveolar macrophages (AM) in the lung 91 

To investigate the physiological consequences of nuclear envelope rupture in immune cells, 92 

we sought to identify genetic models that would exacerbate it. The Lamin A/C protein is required 93 

to limit nuclear envelope ruptures in constricted spaces (Cho et al., 2019; Earle et al., 2020; Nader 94 

et al., 2020). We thus hypothesized that if immune cells undergo NE rupture in vivo, Lamin A/C 95 

depletion should increase its occurrence. To avoid confounding cell-extrinsic effects of Lamin A/C 96 

deficiency in non-immune cells, we analyzed the spleen, lymph nodes, bone marrow and lungs of 97 

mice with immune-specific ablation of Lamin A/C (Lmnafl/fl Vav1-Cre+/-, referred to as Lamin A/C 98 

CKO hereafter (de Boer et al., 2003; Kim and Zheng, 2013)). We did not detect a loss of a range 99 

of major immune populations including dendritic cell, macrophage, T, B, natural killer cells and 100 

hematopoietic stem cell populations in the spleen, lymph nodes and bone marrow (Figure S1A-101 

C). However, in the lung we found that alveolar macrophages (AMs) are specifically depleted in 102 

Lamin A/C CKO mice (Figure 1A), whereas the frequency of lung dendritic cells populations, 103 

eosinophils and interstitial macrophages was unperturbed (Figure S2A, S2B). This depletion of 104 

AM was also confirmed upon myeloid-specific ablation of Lamin A/C (Figure S2C). 105 

To determine if AM were reduced in Lamin A/C CKO as a result of cell loss or phenotypic 106 

changes, we performed single cell RNA sequencing (scRNAseq) on CD45.2+ cells sorted from the 107 

lungs of WT and Lamin A/C CKO mice. Clustering analysis identified immune populations known 108 

to populate murine lung (Figure 1B, top, Figure S3A, S3B, S3C, Table S1). AM were found to 109 

have the highest level of Lamin A/C expression within the immune compartment of the lung, 110 

suggesting a particular dependency of this cell type on high Lamin A/C expression (Figure 1B, 111 

bottom). Indeed, we found that Lamin A/C CKO cells were depleted within the AM cluster in 112 

comparison to WT, whereas WT and Lamin A/C CKO cells were equally distributed among the 113 
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other immune clusters (Figure 1C). Lamin A/C CKO mice analyzed at 3-4 weeks of age did not 114 

have a strong depletion of AM, in contrast to 8-13 week old mice, suggesting a progressive loss 115 

(Figure 1D). High levels of Lamin A/C were also observed in AMs of human, pig and rat (Figure 116 

1E, Table S2) (Raredon et al., 2019). Our data therefore demonstrate that Lamin A/C is required 117 

for the presence of AM, but not other immune cells, within the lung immune compartment. 118 

 119 

A p53-dependent response to DNA damage drives AM depletion 120 

To determine how Lamin A/C deficiency leads to depletion of AM, we examined enriched 121 

signatures in differentially expressed genes (DEGs) (Table S3). We found an enrichment for p53 122 

targets and for genes involved in apoptotic signaling in response to DNA damage, in genes 123 

upregulated in Lamin A/C CKO AMs (Figure 2A, S4A). We also found that Lamin A/C CKO 124 

AMs have a higher level of the DNA damage marker gH2AX at steady-state than that observed in 125 

WT littermates (Figure 2B). In addition, these cells were more sensitive to etoposide, an inducer 126 

of DNA damage, applied ex vivo (Figure 2C). 127 

We thus asked if AM depletion was due to senescence associated with DNA damage. DNA 128 

damage can induce cellular senescence (Gorgoulis et al., 2019). Expression of senescence-129 

associated cell cycle inhibitor p21 was increased in Lamin A/C CKO AM (Figure S4B, Table S3). 130 

The dsDNA sensor cGAS can promote senescence by detecting damaged self DNA accumulating 131 

in the cytosol (Gluck et al., 2017; Yang et al., 2017). We generated mice with double knockout of 132 

Lamin A/C and cGAS (Lmnafl/fl Mab21d1KO/KOVav1-Cre+/-, referred to as Lamin A/C cGAS DKO). 133 

Removal of cGAS did not rescue AM depletion in Lamin A/C CKO mice and elevated DNA 134 

damage persisted (Figure 2D). In agreement with this result, we did not detect expression of cGAS-135 

responsive inflammatory cytokines in Lamin A/C CKO AM such as IL6, IL1b and IL8 (Table S3) 136 
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(Gluck et al., 2017; Yang et al., 2017). Since p53 induces cellular senescence in response to DNA 137 

damage (Reinhardt and Schumacher, 2012), we generated double knockout of Lamin A/C and p53 138 

in immune cells (referred to as Lamin A/C p53 DKO). Conditional knockout of p53 was utilized 139 

to delay the onset of tumor growth and create a time window to analyze AM in tumor-free 140 

conditions (DeMicco et al., 2013). The depletion of AM was rescued in Lamin A/C p53 DKO mice, 141 

despite gH2AX levels remaining elevated in the surviving cells (Figure 2D, Figure S4C). These 142 

findings demonstrate that AM depletion in Lamin A/C CKO mice is a consequence of the response 143 

to DNA damage through p53 and is independent of cGAS. 144 

 145 

Alveolar macrophages (AM) migrate in constricted spaces in the lung 146 

Lamin A/C CKO AMs are progressively lost, consistent with an accelerated senescence 147 

process triggered after birth (Figure 1D). At steady state, most AM are thought to be sessile and 148 

stick to the alveolar epithelium. However slow displacement events within the same alveola or 149 

between alveoli through the pores of Kohn have been observed (Neupane et al., 2020). 150 

Interestingly, pores of Kohn are infrequent in newborns and increase in number during the first few 151 

weeks of life (Amy et al., 1977). Furthermore, we noticed that AM located inside pores of Kohn 152 

appeared to have deformed nuclei (Neupane et al., 2020). To determine if AM migrate in the lung 153 

at heights that induce nuclear envelope rupture, we followed their movements by live imaging in 154 

WT mice. We identified several examples of cell squeezing consistent with entry into pores of 155 

Kohn (Figure 3A and Movie 1). At the most acute point of squeezing, we measured the confined 156 

width of cells to be approximately 2–3 µm (Figure 3B, Movie 2, Figure S5A). These observations 157 

demonstrate constricted migration of AM in vivo within the lung, suggesting a potential 158 
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relationship between this migration and the onset of the senescence process in Lamin A/C CKO 159 

AM. 160 

 161 

Lamin A/C protects against accumulation of nuclear envelope rupture marks in AM 162 

A wide range of cell types display nuclear envelope rupture when passing through 163 

microchannels with 2 µm constrictions or following confinement at heights of 2 µm in vitro (Denais 164 

et al., 2016; Raab et al., 2016). To determine if this height also induces rupture in AM, we isolated 165 

bronchoalveolar lavage (BAL) cells from WT mice and confined these cells at 2 µm and 10 µm, a 166 

control height that does not lead to nuclear deformation. SiglecF staining confirmed the identity of 167 

AM in cells from the BAL (Figure 3C). Upon nuclear envelope rupture, the DNA-binding protein 168 

Barrier-to-Autointegration Factor (BAF) forms characteristic foci on DNA herniations protruding 169 

from the nucleus (Denais et al., 2016; Halfmann et al., 2019). We identified a fraction of cells at 170 

2µm that displayed nuclear DNA blebbing which was associated with foci of BAF (Figure 3D). In 171 

contrast, nuclear blebbing and BAF foci were largely absent in AM confined at 10 µm.  172 

Next, we examined nuclear envelope rupture in AM from Lamin A/C CKO mice following 173 

BAL cell confinement at 2 µm and 10 µm (Figure S5B). We confirmed Lamin A/C ablation in 174 

AM obtained from BALs at the protein level (Figure S5C). Consistent with a role of Lamin A/C 175 

in nuclear shape, Lamin A/C CKO AM confined at 2 µm were characterized by nuclei with reduced 176 

circularity and roundness and increased aspect ratio compared to WT (Figure S5D). Strikingly, a 177 

discontinuous ring of BAF foci was present at the nuclear rim of Lamin A/C CKO AM (Figure 178 

3E). This discontinuous ring of BAF foci was present also at 10 µm (Figure 3E), suggesting that 179 

it was not induced by 2 µm confinement but was present constitutively. In HeLa cells, Lamin A/C 180 

depletion is not sufficient to induce such a ring and instead favors BAF diffusion (Haraguchi et al., 181 
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2008). Therefore, the discontinuous ring of BAF foci that we observed in Lamin A/C CKO is rather 182 

in agreement with the cells undergoing repetitive nuclear envelope rupture and accumulating 183 

multiple individual BAF foci. Lamin A/C therefore protects AM from accumulation of nuclear 184 

envelope rupture marks. 185 

 186 

DNA damage in AM upregulates CD63 and a lysosomal signature 187 

We next examined the functional consequences of Lamin A/C deficiency and DNA damage 188 

in AM. Differential gene expression analysis, together with a bootstrap validation step, was used 189 

to identify the most robustly affected DEGs (Figure 4A). We identified a downregulation of 190 

ribosomal genes that was common among clusters. We also detected upregulation of a set of genes 191 

specifically in the remaining AM of Lamin A/C CKO mice. The second most induced gene was 192 

Cd63, a tetraspanin that is associated with endosomal and lysosomal membranes. We validated 193 

increased protein expression of CD63 in Lamin A/C-knockout AM via intracellular flow cytometry 194 

(Figure 4B). We were also able to validate at the protein level the reduced expression of CD88, 195 

also known as complement component 5a receptor 1 or C5AR1 (Table S3, Figure S6A). We also 196 

identified upregulated expression of a number of proteases including the macrophage elastase 197 

(Mmp12) and cathepsins (Ctsk, Ctsd, Ctsl, Ctsz, Ctsb) (Figure 4A, Table S3). We confirmed 198 

increased Cathepsin L activity in the BAL of Lamin A/C CKO mice (Figure S6B). The BAL of 199 

Lamin A/C CKO mice also contained elevated levels of neutrophils and T cells (Figure S6C) 200 

indicative of altered alveolar homeostasis. 201 

To test if the transcriptional signature of Lamin A/C CKO was the result of an initial DNA 202 

damaging event, we analyzed a single-cell RNA seq dataset of whole lung, five months post-203 

irradiation, which is associated with lung fibrosis. We identified upregulated DEGs in the AM 204 

cluster of irradiated mice (Table S4) and computed the overlap with the upregulated DEGs of 205 
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Lamin A/C CKO AM. Among the genes that overlapped between these two scRNAseq datasets, 206 

were Cd63, lysosomal prosaposin (Psap), Wfdc21 and cathepsins (Figure 4C, Figure S6D). We 207 

next tested if DNA damage itself or the signaling response to DNA damage was inducing CD63, 208 

using Lamin A/C p53 DKO AM. In contrast to Lamin A/C CKO, elevation of CD63 expression 209 

was blunted in Lamin A/C p53 DKO AM (Figure 4D). We therefore conclude that AM upregulate 210 

CD63 in Lamin A/C CKO AM in a p53-dependent manner, and in response to irradiation in WT 211 

AM. Together with our previous results, this suggests that Lamin A/C deficiency causes DNA 212 

damage in AM, leading to p53 activation, which induces CD63 and senescence. 213 

 214 

CD63 is required for damaged DNA clearance in macrophages 215 

CD63 is a tetraspanin that has been proposed to participate to a wide range of intracellular 216 

trafficking processes (Pols and Klumperman, 2009). However, the function of CD63 in 217 

macrophages is not known. CD63 and lysosomes have been associated with genomic DNA 218 

accumulating in the cytosol following the induction of DNA damage in tumor cell lines (Shen et 219 

al., 2015) and in senescent regions of human fibrotic lung (Borghesan et al., 2019). CD63 has also 220 

been implicated in loading nuclear content into exosomes following micronuclei formation in 221 

cancer cell lines (Yokoi et al., 2019). This raised the possibility that CD63 is implicated in the 222 

response to damaged DNA in macrophages. We performed dsDNA staining on bone-marrow 223 

derived macrophages and observed an accumulation of cytoplasmic dsDNA in CD63 KO cells 224 

compared to WT cells (Figure 5A). To investigate whether CD63 may play a role within the 225 

context of damaged DNA in AM, we assessed the level of DNA damage accumulating in CD63 226 

KO AM upon ex vivo application of etoposide, a DNA damage inducer. We detected a higher 227 

percentage of gH2AX+ AM in CD63 KO compared to WT in response to etoposide (Figure 5B, 228 
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Figure S6E). Taken together, these data reveal that CD63 is required to limit the accumulation of 229 

DNA damage and clear cytoplasmic DNA in macrophages. 230 

 231 

Lamin A/C protects against influenza virus infection. 232 

Next, we sought to determine whether the AM alterations that characterize the lungs of 233 

Lamin A/C CKO mice have physiophathological consequences. AM play a particularly critical 234 

protective role in protection against influenza virus infection (Purnama et al., 2014; Schneider et 235 

al., 2014). We therefore infected WT and Lamin A/C CKO mice with the mouse-adapted Influenza 236 

A strain PR8. Lamin A/C CKO mice had a lower probability of survival than their WT littermates 237 

(Figure 6A). Lamin A/C CKO mice also had more dramatic weight loss at critical disease 238 

timepoints (Figure 6B). Significant weight loss in comparison to the day of virus inoculation was 239 

initiated a day earlier than WT littermates (Figure S7A). We observed similar results when testing 240 

a higher dose of Pr8 (Figure S7B, 7C, 7D). We conclude that Lamin A/C is required in immune 241 

cells to protect against influenza virus infection. 242 

 243 

Lamin A/C protects against acquisition of hallmarks of aging in AM 244 

Poor disease outcomes following infection by respiratory viruses, such as influenza virus, 245 

in both mice and humans, is a well-characterized consequence of an aged immune system 246 

(Schneider et al., 2021). This raised the possibility that Lamin A/C CKO leads to accelerated aging 247 

of AM. We showed that WT AM can undergo nuclear envelope rupture at confinement heights that 248 

mimic the constricted spaces these cells migrate through in vivo. AM are long-lived, self-renewing 249 

cells of embryonic origin (Kopf et al., 2015; Sieweke and Allen, 2013). We therefore hypothesized 250 

that if repeated rupture events accumulate over time in vivo, WT AM should gradually acquire a 251 

signature related to Lamin A/C CKO signature. In mice aged for 63 weeks, we detected a reduction 252 
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of AM (Figure S8A), in agreement with a drop in AM levels previously reported in mice aged for 253 

more than 80 weeks (Krishnarajah et al., 2021; Wong et al., 2017; Xin et al., 2015). Next, we 254 

analyzed gene expression in AM from mice of increasing age using the Tabula Muris Senis (TMS) 255 

scRNAseq atlas, a resource characterizing aging in mouse tissues (The Tabula Muris Consortium 256 

et al., 2020). We performed a differentially expression analysis between “young” (1, 3 months) and 257 

“old” (18, 21, 30 months) age groups to define a signature of aging in AM (Figure 7A, Table S5). 258 

Strikingly, Cd63 was the top upregulated hit in each of the aged timepoints compared to each of 259 

the young timepoints. Cd63 expression was induced between 3 and 18 months of age (Figure 7B). 260 

We analyzed mice at 14 weeks (young) and 63 weeks (old) of age, that had an identical genetic 261 

background and were housed in the same facility. We confirmed at the protein level that aged AM 262 

have a higher level of CD63 than their young counterparts (Figure 7C). We also conducted a gene 263 

set enrichment analysis comparing the TMS signature of aging in AM and the signature of Lamin 264 

A/C ablation in AM to appreciate if there was overlap (Figure 7D, Figure S8B). The Lamin A/C 265 

CKO AM signature was enriched in the AM transcriptome of aged mice and the TMS signature of 266 

aging in AM was also reciprocally enriched in the transcriptome of Lamin A/C CKO AM. By 267 

intersecting the DEG identified in the 24 months vs 3 months TMS signature of aging in AM with 268 

those identified in the Lamin A/C CKO AM signature we observed that along with Cd63, Psap, 269 

Wfdc17 and cathepsins were also upregulated in both datasets (Figure 7E, left). To confirm this 270 

data, we extracted the signature of aging in AM from an independent dataset, the Lung Aging Atlas 271 

(LAA) that compared the age points 3 months and 30 months (Angelidis et al., 2019). Using this 272 

LAA signature, we also observed that Cd63, Psap, Wfdc17 and cathepsins were again shared 273 

between the Lamin A/C AM CKO signature and the LAA aged AM signature (Figure 7E, middle). 274 

Finally, to appreciate how divergent different signatures of AM aging can be, we compared the 275 

TMS signature of aging with the LAA signature of aging in AM (Figure 7E, right). Interestingly, 276 
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the two signatures were not identical, which could be explained by different facilities and genetic 277 

backgrounds. However, within the overlap, upregulated expression of Cd63, Psap, Wfdc17 and 278 

cathepsins persisted, suggesting that these changes withstand possible background and 279 

environmental variables. We did not detect elevated DNA damage at steady state in aged AM at 280 

63 weeks based on γH2AX staining, but susceptibility to DNA damage, that characterizes Lamin 281 

A/C CKO AM, was slightly increased in old macrophages (Figure S8C). We therefore found that 282 

Cd63, cathepsin expression and enhanced susceptibility to DNA damage are common features of 283 

aging and Lamin A/C ablation in AM. 284 

 285 
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Discussion 287 

Our results show that AM require Lamin A/C for protection against accumulation of nuclear 288 

envelope rupture marks, genome instability and accelerated aging. 289 

Within the lung immune compartment, AM expressed the highest level of Lamin A/C. AM 290 

are long-lived cells that self-renew in tissues (Sieweke and Allen, 2013). The longevity of this 291 

population in situ may necessitate a higher level of nuclear protection to limit the accumulation of 292 

DNA damage over time. Lamin A/C levels are thought to scale with tissue stiffness (Swift et al., 293 

2013). Therefore, high Lamin A/C expression in AM may be an adaptation to counter repetitive 294 

nuclear deformation and subsequent envelope ruptures caused by constricted migration, such as 295 

through pores of Kohn. Such migration may be further stimulated by lung infection (Neupane et 296 

al., 2020). Additional mechanical effects, such as constant inflation and deflation that occurs during 297 

breathing, could also be a source of biomechanical stress leading to increased nuclear envelope 298 

rupture. 299 

Multiple mechanisms likely contribute to the induction of DNA damage during nuclear 300 

envelope rupture in AM. In addition to limiting nuclear envelope rupture, Lamin A/C also 301 

participates in DNA repair (Gruenbaum and Foisner, 2015). The transient loss of nuclear lamina 302 

integrity during rupture in WT cells may thus transiently compromise the repair process. Cytosolic 303 

leakage of DNA repair proteins after nuclear envelope rupture may also contributes to DNA 304 

damage (Irianto et al., 2017; Xia et al., 2018). Finally, in epithelial and cancer cell lines, the ER-305 

associated exonuclease TREX1 is a driver of this damage after translocation into the nucleus post-306 

rupture (Maciejowski et al., 2015; Nader et al., 2021b). DNA damage caused by nuclear envelope 307 

rupture may therefore be the result of a combination of these and other, yet to be determined, 308 

molecular events. 309 
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 Our results provide in vivo evidence for a CD63/lysosomal pathway that clears damaged 310 

DNA (Shen et al., 2015; Yokoi et al., 2019) and implicate it in the process of aging. CD63 KO AM 311 

were more susceptible to DNA damage than WT counterparts, and CD63 KO BMDM 312 

constitutively accumulated DNA damage. This indicates that CD63 promotes clearance of 313 

damaged DNA in macrophages. Our results also show that CD63 marks macrophages that age over 314 

time or through acceleration with increased DNA damage. CD63 induction in Lamin A/C CKO 315 

required p53, suggesting that it is a response to genome instability. Accordingly, we found that the 316 

CD63/lysosome signature is also induced by exposing lung to ionizing radiation, which is known 317 

to induce senescence and accelerate aging, further suggesting that the upstream cause is the 318 

presence of DNA damage. While we could show that aged AM are more sensitive to etoposide 319 

than young AM, we did not detect increased DNA damage at baseline in aged vs young AM using 320 

yH2AX quantification. This suggests that very low yet chronic DNA damage, below the threshold 321 

of yH2AX induction or detection, accumulates over-time to induce a CD63/lysosomal response. In 322 

support of this idea, whole-lung analyses have detected an increase in DNA damage with age 323 

(Braidy et al., 2011; Lee et al., 2021) and an accumulation of DNA damage with age is emerging 324 

as a generalized feature of aging (Schumacher et al., 2021). 325 

Our results indicate that disruption of Lamin A/C results in endogenous DNA damage that 326 

is sufficient to induce the CD63/lysosomal signature of aged AM. Cell-extrinsic mechanisms likely 327 

play an additional role in AM aging. The lung microenvironment has been implicated in age-related 328 

changes occurring in AM (McQuattie-Pimentel et al., 2021) and lung tissue mechanics evolve 329 

during aging (Sicard et al., 2018). Phagocytosis of DNA or other debris accumulating in the lung 330 

spaces could also contribute to lysosome congestion, reducing the ability of AM to clear their own 331 

damaged DNA. Exogenous DNA damaging events can also contribute to inducing the AM aging 332 
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signature, as we found with lethal irradiation. We speculate that additional exogenous events, such 333 

as inhaled agents or infection, could also serve as source of exogenous DNA damage. Finally, we 334 

also detected increased Cathepsin L activity and immune cell infiltrate detected in the airspaces of 335 

mice with immune-specific ablation of Lamin A/C, which could be triggered initially by an AM-336 

intrinsic defect, but subsequently exacerbated by cell-extrinsic responses to a changing 337 

microenvironment.  338 

While the progressive acquisition of senescent AM during aging is detrimental, as shown 339 

by higher susceptibility to influenza infection in Lamin A/C CKO mice, senescence induction in 340 

AM may be beneficial early in life, in agreement with the antagonistic pleiotropy hypothesis 341 

(Blagosklonny et al., 2009). For example, it might be a safety mechanism to prevent expansion of 342 

damaged cells that self-renew.  343 

Advanced age is a major risk factor for the development of a range of lung diseases. These 344 

include conditions such as chronic obstructive pulmonary disease, lung cancer and respiratory 345 

infections such as influenza and most pressingly, SARS-CoV-2 (Schneider et al., 2021). AMs play 346 

central roles in these diseases (Casanova-Acebes et al., 2021; Purnama et al., 2014; Schneider et 347 

al., 2014). We propose that Senescence INduction by Nuclear Envelope Rupture (Nader et al., 348 

2021b) (SINNER) is a mechanism of aging in lung alveolar macrophages. Targeting nuclear 349 

envelope rupture may thus constitute a novel opportunity for therapeutic intervention in disease 350 

and aging. Beyond AM, we propose that SINNER may be a mechanism of aging in other cell types, 351 

that remain to be uncovered. 352 

 353 
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Figure 1 Lamin A/C protects alveolar macrophages from depletion.  376 

(A) Flow cytometric analysis of AM in WT and Lamin A/C CKO lungs. Top, representative 377 

samples. Bottom, percentage of live and absolute counts of AM (n = 16-19 mice combined from 378 

10 independent experiments, bar indicates mean ± SD unpaired t-test).  379 

(B) tSNE representation of cells identified via single cell RNA sequencing (scRNAseq) of 380 

CD45.2+ lung immune cells sorted from WT and Lamin A/C CKO mice (n = 2 female mice per 381 

genotype). Top, cluster labelling. Bottom, normalized Lmna expression.  382 

(C) Annotation of WT and Lamin A/C CKO cells in each cluster. Left, tSNE representation. Right, 383 

fraction of  WT and Lamin A/C CKO per cluster.  384 

(D) Absolute counts of AM (CD45.2+SSChiMHCintSiglecF+) in lung of WT vs Lamin A/C CKO 385 

lung based on flow cytometric analysis at 3-4 and 8-13 weeks of age (n = 4-19 mice, combined 386 

from 12 independent experiments, one-way ANOVA with Šidák).  387 

(E) Expression of the Lamin A/C-coding gene in clusters of lung cells from human, rat, mouse and 388 

pig. 389 
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Figure 2 Loss of alveolar macrophages is caused by a p53-dependent response to DNA 391 

damage.  392 

(A) Transcription factor binding site enrichment in promoters of differentially expressed genes 393 

(DEGs) upregulated in Lamin A/C CKO and specific to the AM cluster, using oPOSSUM and X2K 394 

methods. 395 

(B) Intracellular levels of gH2AX within WT and Lamin A/C CKO AM 396 

(CD45.2+SSChiMHCintSiglecF+). Left, representative samples. Right, mean fluorescence intensity 397 

(MFI) of gH2AX signal normalized to isotype control signal (n = 12-13 mice combined from 11 398 

independent experiments, bar indicates mean ± SD, unpaired t test).  399 

(C) gH2AX response to DNA damage in AM (CD45.2+SSChiMHCintSiglecF+). WT vs Lamin A/C 400 

CKO lung single cell suspensions were analyzed directly or incubated with DMSO or 50 µM 401 

etoposide for 1 hour. Left, representative samples. Right, quantification of gH2AX+ cells (n = 5 or 402 

6 mice, combined from 3 independent experiments, bar indicates mean ± SD, one-way ANOVA 403 

with Šidák test).  404 

(D) Impact of cGAS and p53 deficiencies on AM percentages and gH2AX levels in Lamin A/C 405 

CKO mice. 3 breeding cohorts are shown: WT (Lmnafl/fl Vav1-Cre-/-) vs Lamin A/C CKO (Lmnafl/fl 406 

Vav1-Cre+/-), cGAS KO (Lmnafl/fl Mab21d1KO/KOVav1-Cre-/-) vs Lamin A/C cGAS DKO (Lmnafl/fl 407 

Mab21d1KO/KOVav1-Cre+/-) and WT (Lmnafl/fl p53fl/flVav1-Cre-/-) vs Lamin A/C p53 DKO 408 

(Lmnafl/fl p53fl/flVav1-Cre+/-). In each experiment, cGAS KO and Lamin A/C cGAS DKO or WT 409 

and Lamin A/C p53 DKO were analyzed together with age-matched WT and Lamin A/C CKO 410 

mice. Top, fraction of AM. Bottom, gH2AX MFI is first normalized to isotype control level in each 411 

sample, and next to WT analyzed in the same experiment (n = 4-10 mice combined from 8 412 

independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). 413 

414 
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Figure 3 Constricted migration and nuclear envelope rupture in alveolar macrophages.  415 

(A) Live imaging of WT mouse lung (female, 12 weeks old) after administration of Hoechst and 416 

an anti-SiglecF antibody. Left, broad field of a lung region. Right, individual SiglecF+ AM 417 

demonstrating constricted migration (see also Movie 1). 418 

(B) Time-lapse of an AM undergoing constricted migration. Top left, images of XY and XZ planes 419 

overt time. Bottom left, contour representation. Right, measurement of the cell width at the most 420 

acute point of squeezing. 421 

(C) Cells from the bronchialveolar lavage (BAL) of WT mice confined at a height of 2 µM and 10 422 

µm for 1.5 hours and subsequently stained for DAPI, BAF and SiglecF (representative of n = 4 423 

independent experiments, each time BAL was pooled from 2 mice aged 8-26 weeks). 424 

(D) BAF foci in AM (SiglecF+) from WT BAL following confinement for 1.5 hours. Left, 425 

representative images at 2 µM height. Right, quantification of the percentage of BAF foci+ AM 426 

after confinement at 2 µm or 10 µM (n = 3-4 independent experiments, each time BAL was pooled 427 

from 2 mice aged 8-26 weeks, bar indicates mean ± SD, unpaired t test on log-transformed data). 428 

(E) BAF staining in AM (SiglecF+) from WT and Lamin A/C CKO BAL, following confinement 429 

at 2 µm and 10µm for 1.5 hours (representative of n = 3-4 experiments, each time BAL was pooled 430 

from 2 mice aged 8-26 weeks). Different scale bars were used between 2 µm and 10µm to 431 

accommodate for cell spreading at 2 µm. 432 

 433 

  434 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480837
http://creativecommons.org/licenses/by-nc-nd/4.0/


C

25
34 111

Lamin A/C
CKO vs WT

Irradiated
vs control

Fth1
Wfdc17
Ftl1
Ctsd
Wfdc21
Tspo
Ctsl
Cd63
Ctsb
Psap
Acp5
Lyz2
Ctsk
Ctsz
Pgam1
AA467197
Ccl6
Mfge8
S100a4
Crip1
Ccl9
Gpnmb
Gsn
Pla2g16
Mmp12

W
T 

La
min 

A/C

CKO 
cG

AS K
O

La
min 

A/C

cG
AS D

KO 
0

1

2

3

4

5
ns

N
or

m
al

iz
ed

C
D

63
 M

FI
 

(A
b/

is
ot

yp
e)

Lmnafl/fl

Vav1-Cre
cohort

Lmnafl/fl

p53fl/fl

Vav1-Cre
cohort

Lmnafl/fl

Mab21d1KO/KO

Vav1-Cre 
cohort

W
T 

La
min 

A/C
 

p5
3 D

KO 

D
M

m
p12

C
d63

S100a6
C

tsk
W

fdc17
C

cl9
Phlda3
C

cl6
M

pc1
C

tsd
R

ps2
Lgals3
R

ps27l
H

3f3a
Em

p1
H

ebp1
C

om
m

d10
Ier3
m

t−Atp6
G

sr
Tm

sb10
Atp5k
Tulp4
G

m
10260

Lst1
R

ps26
AU

020206
R

am
p1

M
alat1

C
pne5

Lm
na

Slc7a11
Tnfaip2
R

pl36
m

t−N
d3

G
m

10076
R

pl37a
R

pl37
R

pl39
R

pl41
R

pl35
R

ps21
R

ps27
R

ps28
U

ba52
R

pl38
R

ps29

AM
granulocyte
naive Cd8+ T
DC
NK
Treml4+ Mo
B cell
neutrophil
Ly6c+ Mo
naive Cd4+ T
mem Cd8+ T
Treg

DEG Log2 FC
Lamin A/C CKO/WT

Not a DEG
−2
−1
0
1
2
3

A
Figure 4

B

W
T

La
min 

A/C

CKO

0

10

20

30

C
D

63
 M

FI
(A

b/
is

ot
yp

e)

CD63isotype

gated on SiglecF+ AM

WT
Lamin A/C CKO

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Figure 4 A lysosomal/CD63 response is induced by DNA damage. 435 

(A) Heatmap showing the significant DEGs in Lamin A/C CKO vs WT cells within cell clusters. 436 

Cell clusters are ordered by decreasing fraction of WT cells. Genes were clustered with a complete 437 

linkage method computed on the Manhattan distances between genes, shown as dendrogram. 438 

(B) Intracellular levels of CD63 in lung AM (CD45.2+SSChiMHCintSiglecF+). Top, representative 439 

samples. Bottom, CD63 MFI normalized to isotype control (n = 17-19 mice combined from 15 440 

independent experiments, bar indicates average ± SD, unpaired t test). 441 

(C) Intersection of the DEGs identified in Lamin A/C CKO vs WT AM and the DEGs identified 442 

in AM 5 months post-17 Gy irradiation vs no irradiation (control). Cd63, Psap and cathepsin genes 443 

are highlighted in red.  444 

(D) Intracellular levels of CD63 in lung AM (CD45.2+SSChiMHCintSiglecF+)  from 3 breeding 445 

mouse cohorts: WT (Lmnafl/fl Vav1-Cre-/-) vs Lamin A/C CKO (Lmnafl/fl Vav1-Cre+/-), cGAS KO 446 

(Lmnafl/fl Mab21d1KO/KOVav1-Cre-/-) vs Lamin A/C cGAS DKO (Lmnafl/fl Mab21d1KO/KOVav1-447 

Cre+/-) and WT (Lmnafl/fl p53fl/flVav1-Cre-/-) vs Lamin A/C p53 DKO (Lmnafl/fl p53fl/flVav1-Cre+/-) 448 

(n = 4-10 mice combined from 8 independent experiments, bar indicates mean ± SD, one-way 449 

ANOVA with Šidák test). 450 

  451 
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Figure 5
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Figure 5 CD63 is required for clearance of damaged DNA in macrophages. 452 

(A) Lamp1 and dsDNA staining in none marrow-derived macrophages (BMDM) from WT and 453 

CD63 KO mice. Left, representative images. Middle, average fluorescence intensity of the dsDNA 454 

signal per cell quantified outside the nucleus in a representative pair of WT vs CD63 KO (each 455 

symbol represents a single cell, Kolmogorov-Smirnov test). Right, average dsDNA signal per 456 

mouse (n = 3 mice per genotype in one experiment, 49 weeks old, bar indicates mean ± SD, 457 

unpaired t-test). 458 

(B) gH2AX levels within AM (CD45.2+SSChiMHCintSiglecF+) of WT vs CD63 KO lung single cell 459 

suspension, directly ex vivo or after incubation with DMSO or 50 µM etoposide for 1 hour. Left, 460 

representative samples. Right, fraction of gH2AX positive cells (n = 3 mice per genotype in one 461 

experiment, 19 weeks old, bar indicates mean ± SD, one-way ANOVA with Šidák test).  462 

 463 

  464 
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Figure 6 Lamin A/C protects against influenza virus infection. 465 

(A) Survival of WT vs Lamin A/C CKO mice following infection with 50 pfu of Influenza A The 466 

virus PR8 was delivered via the intranasal route (n = 12 female mice per genotype, combined from 467 

2 independent experiments, Log-rank Mantel-Cox test).  468 

(B) Percentage of day 0 weight observed each day post infection described in (E). Curves of 469 

average ± SEM weights are shown and continued until a first death occurs in the group. 470 

  471 
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Figure 7
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Figure 7 Lamin A/C protects against hallmarks of aging in alveolar macrophages. 472 

(A) Heatmap showing the significant DEGs in old (18, 21, 30 months) vs young (1 month, 3 473 

months) comparisons in AM in the TMS dataset. Genes were clustered with a complete linkage 474 

method computed on the Manhattan distances between genes, shown as dendrogram. 475 

(B) Violin plot showing the normalized expression of Cd63 in the AM cluster at different ages. 476 

(C) Intracellular CD63 levels in AM (CD45.2+SSChiMHCintSiglecF+) of young (14 weeks) vs old 477 

(63 weeks) mice. Left, representative samples. Right, CD63 MFI normalized to isotype control (n 478 

= 4 mice combined form 2 independent experiments, bar indicates mean ± SD, unpaired t test). 479 

(D) Reciprocal gene set enrichment analyses, as indicated on figure. 480 

(E) Intersection of the upregulated DEGs in Lamin A/C CKO vs WT, TMS 24 months vs 3 months 481 

and LAA 30 months vs 3 months. Common genes are shown in red and Cd63 is highlighted. 482 

 483 

  484 
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STAR Methods 485 

Mice 486 

All animals were used according to protocols approved by Animal Committee of Curie Institute 487 

CEEA-IC #118 and maintained in pathogen-free conditions in a barrier facility. Experimental 488 

procedures were approved by the Ministère de l'enseignement supérieur, de la recherche et de 489 

l'innovation (APAFIS#24911-2020033119476092-v1) in compliance with international 490 

guidelines.  C57BL/6JMb21d1tm1d(EUCOMM)Hmgu (Mb21d1KO/KO) mice were obtained from 491 

The Jackson Laboratory. Lmnafl/fl Vav1-Cre+/- (Lamin A/C CKO mice, (de Boer et al., 2003; Kim 492 

and Zheng, 2013)) and Lmnafl/fl LysM-Cre+/- (Clausen et al., 1999) were obtained from José María 493 

González Granado. p53flox/flox mice (Jonkers et al., 2001) were obtained from Renata Basto. 494 

CD63KO/KO were obtained from Paul Saftig (Schröder et al., 2009). The sex of mice used in the 495 

experiments shown are listed in Table S6. Littermate controls were used in each experiment. The 496 

age range was 6-13 weeks unless otherwise stated. Female C57BL/6J elderly mice and young 497 

controls were purchased from Charles River Laboratories. Unless otherwise stated, WT controls 498 

are Lmnafl/fl Vav1-Cre-/-. For analysis of DKO animals (Lamin A/C cGAS DKO, Lamin A/C p53 499 

DKO), Lamin A/C CKO of the same age were analyzed with DKO animals in each experiment, 500 

together with controls from each cohort.  501 

 502 

Lung preparation for FACS analysis 503 

Dissected lungs were mechanically disrupted using scissors and digested for 30 minutes with 504 

0.4mg/mL collagenase (Sigma C2139) + 20μg/mL DNAse I (Sigma 10104159001) in RPMI at 37 505 

degrees in 12 well tissue culture plates. This was followed by homogenization of the tissue mix 506 

over a 100µm filter using 1% BSA/1mM EDTA/PBS and a 5mL syringe plunger. Red blood cells 507 
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were lysed for five minutes at 4 degrees using red blood cell lysis buffer (Ozyme 42031) and the 508 

cells were washed and filtered again over a 100µm filter. The resulting single cell lung suspension 509 

was then used in FACS analysis (see Table S7 for a list of antibodies used in the study) and cell 510 

sorting. 511 

 512 

Spleen and lymph node preparation for FACS analysis 513 

Dissected spleen was injected with 0.125mg/mL Liberase (Sigma 5401020001) + 20μg/mL DNAse 514 

I (Sigma 10104159001) and inguinal and brachial lymph nodes were disrupted using scissors and 515 

incubated with the same Liberase/DNAseI mix. The organs were digested for 20 minutes with 516 

Liberase/DNAseI at 37 degrees in 12 well tissue culture plates. This was followed by 517 

homogenization of the tissue mixes over a 40µm filter using 1% BSA/1mM EDTA/PBS and a 5mL 518 

syringe plunger. Red blood cell lysis was performed as described above and the cells were washed 519 

and filtered again over a 40µm filter. The resulting single cell suspensions were used in FACS 520 

analysis. 521 

 522 

Bone marrow extraction 523 

Tibias and femurs were cleaned and cut at the ends. Bone marrow was flushed via centrifugation 524 

at 2000 rcf for 20 seconds at 4 degrees. Extracted bone marrow was then used directly to generate 525 

BMDMs or red blood cell lysis was performed as described above and the cells were washed and 526 

filtered over a 40µm filter. The resulting single cell suspension was used in FACS analysis. 527 

 528 

Flow cytometry (FACs) analysis 529 
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BAL cells, lung, spleen, lymph node or bone marrow single cell suspension was first stained 530 

using  a Fixable Viability Dye (ebioscience 65-0865-14) for 20 minutes at 4 degrees in PBS. The 531 

cells were then washed with 1% BSA/1mM EDTA/PBS (FACs buffer) and stained with antibodies 532 

specific for surface antigens for 30 minutes at 4 degrees in FACs buffer. If intracellular staining 533 

was also performed, the Foxp3 Transcription Factor Staining Buffer Set (eBioscience 00-5523-00) 534 

was used following the manufacturer’s instructions. For surface staining of CD88, cells were 535 

incubated with Fc block in FACs buffer for 15 minutes at 4 degrees after live/dead staining prior 536 

to staining for surface antigens. See Table S7 for details on antibodies used for cell surface and 537 

intracellular staining. Cells were filtered over 40µm filter-cap FACs tubes in FACs buffer just prior 538 

to analysis on an LSRII flow cytometer.  539 

 540 

Cell sorting and scRNAsequencing 541 

Lung single cell suspension was stained for FACs analysis as described above (live/dead and 542 

surface staining) and CD45.2+ lung immune cells were sorted using a BD FACs Aria III from 2 543 

Lmnafl/flVav1-Cre+/- and 2 Lmnafl/fl Vav1-Cre-/- littermate controls  (all female and 10 weeks old). 544 

A 100µm nozzle and 20 psi pressure was used during sorting. Cells were sorted into 20% FBS in 545 

RPMI with penicillin-streptomycin, 50µM 2-Mercaptoethanol, 1X non-essential amino acids, 546 

10mM HEPES and 1mM sodium pyruvate added and kept at 4 degrees. After cell counting using 547 

a LUNA automated cell counter (Logos biosystems), 9600 CD45.2+ lung immune cells per sample 548 

were processed using the Chromium Single Cell 3’ Reagents Kits v3 following the manufacturer’s 549 

instructions and sequenced using 25,000 reads per cell on a Ilumina NovaSeq 6000. 550 

 551 

Ex vivo etoposide treatment 552 
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Lung single cell suspension was divided into three parts. One part was kept at 4 degrees 553 

(unstimulated), and the remaining 2 parts were stimulated with DMSO or 50μM etoposide (Sigma 554 

E1383) for 1 hr at 37 degrees 5% CO2 in 6 well tissue culture plates. After 1 hour the DMSO and 555 

etoposide-treated cells were re-harvested via flushing and these samples together with the 556 

unstimulated sample, were stained for FACs analysis as described above (live/dead, surface and 557 

intracellular staining). 558 

 559 

Bronchialveolar lavage (BAL) 560 

Mice were euthanized via gentle cervical dislocation under isoflurane-mediated anesthesia. An 561 

incision was made at the voice box and a 1mL syringe with a 18G blunt safety transfer needle 562 

(Dutscher 303129) attachment was inserted into the trachea. Five, 1mL washes of the lung 563 

airspaces were performed using warm 0.5% BSA/2mM EDTA/PBS. For flow cytometry analysis 564 

or cell confinement, red blood cells were lysed as described above and the BAL cells were washed 565 

and filtered over a 40µm filter. For the measurement of cathepsin L activity in BAL, the first 1mL 566 

BAL wash was stored separately and the supernatant was used immediately or aliquoted and frozen 567 

for future analysis.  568 

 569 

Multi-photon imaging 570 

Two-photon intravital lung imaging was performed according to Dr Simon Cleary 571 

recommendations (Cleary et al., 2020). Following anesthesia with ketamine/xylazine (80/15 mg/kg 572 

i.p.), slow intratracheal administration of 50µl of a PBS solution containing (1mg/ml) Hoechst and 573 

1µg of anti-siglecF-PE antibody was performed. Subsequently mice were ventilated with room air 574 

plus 1.5% isoflurane at 125 breaths/min at 10 μL/g body weight breath volume (Minivent, Harvard 575 
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Apparatus), with 2–3 cmH2O positive end-expiratory pressure. A custom-made thoracic window 576 

was then inserted into an intercostal incision and the left lung was immobilized against the window 577 

with 10-30 mmHg negative pressure. Local temperature was monitored and maintained at 33°C 578 

using an incubation chamber. The two-photon laser-scanning microscopy (TPL SM) set-up used 579 

was a 7MP (Carl Zeiss) coupled to a Ti: Sapphire Crystal multiphoton laser (ChameleonU, 580 

Coherent), which provides 140-fs pulses of near-infrared light, selectively tunable between 680 581 

and 1050 nm and an optical parametric oscillator (OPO-MPX, Coherent) selectively tunable 582 

between 1,050 and 1,600 nm. The NLO and the OPO beams were spatially aligned and temporally 583 

synchronized using a delay line (Coherent). The excitation wavelength was 820 nm for the NLO 584 

beam and 1070 nm for the OPO beam. The system included a set of external nondescanned 585 

detectors in reflection with a combination of a LP-600-nm dichroic mirror (DM) followed by LP-586 

462-nm DM with 417-/60-nm emission filter (EF), LP-500-nm DM with 480-/40-nm EF, LP-587 

550nm DM with 525-/50-nm and 575/50 nm EFs. Real time movies were performed by imaging 588 

every 10s by 5 consecutive 3μm z spacing image stack (total 12μm thickness). For all images the 589 

objective was a water immersion, plan apochromat ×20 (numerical aperture = 1). 590 

 591 

Cell confinement 592 

Confinement of BAL cells was performed as described (Nader et al., 2021b). Briefly, a 6-well plate 593 

cell confiner was used to confine BAL cells at 2μm and 10μm using coverslips containing a 594 

microfabricated layer of PDMS micropillars  of defined heights, with the height of the pillars 595 

determining the height of spatial confinement of cells placed between the coverslip and 6-well plate 596 

surface. The coverslips were applied to the cells using large PDMS pillars attached to a modified 597 

6-well plate cover-lid. These large PDMS pillars served to push the confining coverslips onto the 598 
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cells to confine them at desired heights on the 6 well glass/plastic bottom plates. Imaging of the 599 

cells was performed using the same plates (see below). 600 

 601 

Immunofluorescence of confined BAL 602 

For nuclear shape analysis, BAL cells were stained with Hoescht 33342 (Invitrogen R37605) prior 603 

to cell confinement. In 1 of the 3 experiments, the cells were also stained for surface expression of 604 

CD11c and SigelcF prior to confinement. The cells were imaged immediately while still confined 605 

using an epifluorescence DMI-8 Leica inverted microscope equipped with a Hamamatsu OrcaFlash 606 

4.0 Camera. For immunofluorescence staining, BAL cells were confined for 1.5 hours at at 37 607 

degrees 5% CO2. Staining was performed in the 6 well plate used during confinement after removal 608 

of the pillars/coverslips. The cells were fixed with 4% paraformaldehyde for 20 minutes at room 609 

temperature and quenched with 0.1M glycine (Life Technologies) for 10 minutes at room 610 

temperature. Permeabilization was performed using 0.2% BSA/0.05% saponin in PBS (IF buffer) 611 

for 30 minutes at room temperature. The samples were incubated with primary antibodies in IF 612 

buffer + 10% goat serum (Sigma G9023) overnight at 4 degrees in a humidity chamber. After 4 613 

washes with IF buffer the secondary antibodies were incubated for 1 hour at room temperature 614 

protected from light. The samples were then washed 5 times with IF buffer and a further 2 times 615 

each with PBS and then mounting in Fluoromount-G Mounting Medium with DAPI (Fisher 616 

scientific 15596276). Samples were kept at 4 degrees, shielded for light prior to imaging. Imaging 617 

was performed using spinning-disc confocal microscope with a Yokogawa CSU-X1 spinning-disc 618 

head on a DMI-8 Leica inverted microscope equipped with a Hamamatsu OrcaFlash 4.0 Camera, 619 

a Nano-ScanZ piezo focusing stage (Prior Scientific) and a motorized scanning stage (Marzhauser). 620 

Both microscopes were controlled by MetaMorph software (Molecular Devices). 621 
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A macro was developed to measure nuclear shape of confined BAL cells using ImageJ in which 622 

individual nuclear regions were identified after thresholding using the DAPI channel and the 623 

Analyze Particles function was run. Three repeats of this experiment were performed, and the third 624 

included manual selection of CD11c+SiglecF+ cells. Another macro was developed to quantify the 625 

number of gH2AX foci and their intensity in confined BAL cells. Here, individual nuclear regions 626 

were identified after thresholding using a Z projection of the DAPI channel and SiglecF- cells were 627 

excluded. The number of individual gH2AX foci within nuclei was quantified using the Find 628 

Maxima function on a Z projection of the gH2AX channel, and the mean intensity of these spots 629 

per nuclei was measured.  630 

 631 

Measurement of Cathepsin L activity 632 

Fresh or thawed BAL supernatant was analyzed using  a Cathepsin L Activity Assay Kit (Abcam 633 

ab65306) kit following the manufacturer’s instructions and the sample fluorescence was measured 634 

using a CLARIOstar microplate reader (BMG LABTECH). Readings were normalized by the 635 

volume of BAL retrieved. 636 

 637 

BMDM differentiation and immunofluorescence  638 

Extracted bone marrow cells (see methods above) were plated at 1million/mL on untreated plates 639 

in RPMI with 10% FBS, penicillin-streptomycin, 50µM 2-Mercaptoethanol, 1X non-essential 640 

amino acids, 10mM HEPES and 1mM sodium pyruvate + 10ng/mL human M-CSF (Miltenyi 641 

Biotec 130-096-492). Cells were left undisturbed for 6 days and then harvested following 642 

detachment using trypsin. BMDM were first fixed in in 2% PFA for 15 minutes in cell culture 643 

medium and then 2% PFA in PBS 1X. The cells were washed 3 times in PBS and quenched with 644 
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50mM Glycine in PBS for 20 minutes at room temperature, followed by 3 PBS washes. After 645 

quenching, the cells were permeabilized in 0.2% BSA, 0.1% saponin in PBS for 15 minutes at 646 

room temperature and blocked in 1% BSA, 0.2% saponin in PBS was 10 minutes at room 647 

temperature. Primary and secondary antibodies were incubated in 1% BSA in PBS for 30 minutes 648 

shielded from light. Cells was mounted using Immuno-mount (Thermo Scientific). BMDM were 649 

imaged on SP5 Confocal microscope (Leica). Quantification of average intensity for cytoplasmic 650 

dsDNA staining was performed using ImageJ software by selecting region of interest excluding 651 

nucleus from each of the cells imaged for quantification.  652 

 653 

Whole mouse irradiation 654 

Ten to fourteen-weeks old females C57BL/6J mice were purchased from Charles River 655 

Laboratories and exposed to whole thorax irradiation at a dose of 17 Gy under 2.5% isoflurane 656 

anaesthesia. The irradiation procedure was approved by the ethics committee of the Institut Curie 657 

CEEA-IC #118 (Authorization number APAFIS#5479-201605271 0291841 given by National 658 

Authority) in compliance with the international guidelines. Mice, kept for five months after 659 

irradiation, were weekly monitored and sacrificed if predefined ethical endpoints (i.e. loss of 20% 660 

body weight, severe dyspnea) were reached. 661 

 662 

Influenza infection 663 

Influenza A virus PR8 (strain A/Puerto Rico/8/1934 H1N1) was a gift from Olivier Lantz. 664 

Intranasal infection with 50 or 100 pfu was performed under Ketamine/Xylazine-mediated 665 

anesthesia inside a PSMII hood. Mice were weighed daily and all husbandry was performed 666 

underneath a PSMII hood with strict containment measures followed. An ethical endpoint of 20% 667 

d0 weight loss was observed in all experiments. Animal care and use for these infection 668 
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experiments was performed in accordance with the recommendations of the European Community 669 

(2010/63 / UE) for the care and use of laboratory animals. Experimental procedures were 670 

specifically approved by the ethics committee of the Institut Curie CEEA-IC # 118 (Authorization 671 

APAFIS # 32125-2021062516083243 v1 given by National Authority) in compliance with the 672 

international guidelines.  673 

 674 

Data analysis 675 

Analysis of FACs data was performed using FlowJo v10.6.2. Statistical analyses were performed 676 

using PRISM v9.1.2, the type of test performed is detailed in the relevant figure legends. ImageJ 677 

Java 1.8.0_66 was used for analysis of immunofluorescence and intravital data. Figures were 678 

compiled using Adobe illustrator v15.1.0 679 

 680 

Bioinformatics analysis  681 

Quality check, read alignment, computation of the UMI counts, and cell calling. FASTQ files 682 

were obtained from BCF files using cellranger mkfastq command from CellRanger v3.0.2 (Zheng 683 

et al., 2017). Sequencing quality was assessed using FastQC v11.8 684 

(https://www.bioinformatics.babraham.ac.uk). cellranger count command (--expect cells 6000) 685 

was used to map the reads to the annotated mm10 genome (accession: GCA_000001635.6, gene 686 

build: 2016-01), compute UMI counts, and call cellular barcodes.   687 

DoubletDetection (https://doubletdetection.readthedocs.io) was run on the gene-cell expression 688 

matrix 50 times and a barcode was labelled as doublet (i.e., a droplet containing more than one 689 

cell) if it was detected as such (p-value ≤ 107) in at least 40 iterations. 690 

 691 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Processing of the gene-cell expression matrix. The gene-cell expression matrix for each sample 692 

was imported in R using Seurat v3.0.0 (Satija et al., 2015) and normalized as follows: the UMI 693 

count of each gene i in cell j was augmented by 1, divided by the total UMI count for cell j, 694 

multiplied by 10000, and log-transformed. Doublets and cells with < 200 detected genes (UMI 695 

count ≥ 1) were filtered out. Only the genes detected in ≥ 2 cells in at least one sample were 696 

retained. The normalized matrices for the four samples were concatenated to obtain a joint 697 

normalized matrix M and gene expression is standardized (Z-score) to obtain a scaled matrix M'.  698 

 699 

Generation of the clustering solution. Feature selection methods and clustering parameters were 700 

let vary in order to optimize the definition of the cell populations.  701 

Feature selection was performed on M (defined above) using either mean.var.plot or vst method 702 

from Seurat. They both model the expression dispersion of each gene in order to detect the 703 

candidates that showed the highest variability across cells, called highly variable genes. For 704 

mean.var.plot, the average expression was set in [0.1, 0.5] and the scaled dispersion was required 705 

to be ≥ d, with d = 0.5, 1, or 1.5. For vst, the number of top variable genes retained was set to 500, 706 

1000, or 2000, respectively. 707 

A principal component analysis (PCA) was possibly performed on M' (defined above) after feature 708 

selection. The first 50 principal components (PCs) were calculated using an SVD approximation. 709 

The number of top PCs to be retained was automatically defined using the following approach. 710 

First, a p-value ph was computed for each component PCh using the JackStraw method (Seurat, 711 

default parameters). To  identify the contribution to the standard deviation that was likely due to 712 

noise, we computed the standard deviation σnoise explained on average by PC40,…,PC50. The 713 

optimal number of top PCs was set to the maximal h such that the two conditions σh ≥ 1.25σnoise 714 

and ph ≤ 10−5 simultaneously hold. 715 
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Clustering was done using the Waltman and van Eck algorithm, either on the selected features or 716 

on the top h PCs, by varying the number of neighbors k in {30, 40, 50} and the resolution parameter 717 

r from 0.1 to 1 in steps of 0.1. Overall, 360 clustering solutions were generated. 718 

 719 

Selection of the optimal clustering solution and identification of cell populations. Given a 720 

clustering solution C, a silhouette width silh(j) was computed for each cell j using the n×n matrix 721 

D, where n is the number of cells and Djk is the euclidean distance between cell j and cell k, 722 

computed on the same space where C is calculated (features or PCs). The average silhouette width 723 

across a cluster c will be referred to as silh(c).  724 

For each solution, the cluster with highest average expression ranking across the alveolar 725 

macrophage (AM) markers (Marco, Mrc1, Siglecf, Lmna, Itgax) was defined as the putative AM 726 

cluster and labelled as cAM. For each feature selection method, with or without PCA, we selected 727 

the solution such that silh(cAM)+silh(C) is maximal (12 solutions in total). Among them, we selected 728 

the solution C such that silh(C) is maxima, which contained 18 clusters (k = 30, r = 0.7) and was 729 

computed on the top 20 PCs obtained from 399 features (mean.var.plot, d = 1.5; see “Generation 730 

of the clustering solution”). A tSNE transformation was computed, with perplexity = 10, on the 731 

same input used to compute C. 732 

 733 

Cluster labelling. Clusters identify was assigned by manual curation using the ImmGen 734 

MyGeneSet tool (http://rstats.immgen.org/MyGeneSet/). Clusters identified as thymic T cells, 735 

endothelial cells and epithelial cells were removed from downstream analyses, resulting in 14 736 

differentiated immune cell clusters. 7395 cells were retained for WT and 7493 for Lamin A/C 737 

CKO.  738 

 739 
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 740 

Differential expression analysis. Differential expression analysis was performed between each 741 

cluster and its complementary, and between the WT and Lmnafl/flVav1-Cre cell subsets, cWT and 742 

cKO, for each cluster c on solution C, using MAST method (Finak et al., 2015). Genes detected in 743 

≥ 10% cells in either one of the two conditions with |log2FC|> 0.5 and adjusted p-value < 0.05 744 

(Bonferroni correction) were defined as differentially expressed (DEGs).  745 

For bootstrap validation, 10 cells subsets containing 50% of the cells were randomly generated for 746 

both cWT and cKO for each immune cell cluster c containing at least 50 cells in both cWT and cKO (12 747 

out of the 14 immune cell clusters identified).. A DEG (|log2(FC)| > 0.5, adjusted p-value < 0.05, 748 

detected in ≥ 10% of the cells in either a subset or its complementary) found in at least one 749 

comparison between a subset and its complementary (within either cWT or cKO) was included in a 750 

null set. 100 cross-comparisons were performed between each pair of subsets generated from cWT 751 

and cKO and genes identified as DEGs are extracted (|log2(FC)| > 0.5, adjusted p-value < 0.05, 752 

detected in ≥ 50% of the cells in either one subset). A DEG detected in the full cWT versus cKO  753 

comparison was labelled as validated if it did not belong to the null set, was detected in ≥ 50% of 754 

the cells in either cWT or cKO , and was found among the top 25% significant DEGs in ≥ 90% of the 755 

cross-comparisons. 756 

 757 

Single-cell RNA-Seq of irradiated murine AM. 758 

Lungs were resected and single cell suspensions were prepared by enzymatic dissociation before 759 

loading into the Chromium controller (10x Genomics). Single-cell RNA-Seq of irradiated murine 760 

AM were prepared using single cell 3’RNA-Seq V2 reagent kit. cDNA quality control was assessed 761 

by capillary electrophoresis (Bioanalyzer, Agilent) before libraries preparation and sequencing on 762 

HiSeq 2500 (Illumina). Initial data processing was performed using the Cell Ranger pipeline (v2.1 763 
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10x Genomics). Count matrices were processed with Seurat package v2.5. Briefly, gene counts 764 

matrices were filtered (nGene < 2500; percentage of mitochondrial genes < 0.07), normalized and 765 

aligned using the canonical correlation analysis method in Seurat. After dimensionality reduction, 766 

clusters were annotated based on known cell type markers and DEG analysis performed on selected 767 

AM cluster. DEGs were identified in AM 5 months post-17Gy irradiation vs non-irradiated controls 768 

as genes that satisfy | log2(FC )| > 0.5 with an adjusted  p-value < 0.05 and are detected  in at least 769 

10% of the cells in either one of the two conditions. We obtained 141 up- and 216 down-regulated 770 

genes for 5 months irradiation compared to control. 771 

 772 

 773 

Public single-cell RNA-Seq datasets of murine AM.  774 

Tabula Muris Senis (TMS). The 10x AM data were obtained from the of the Tabula Muris Senis 775 

dataset (The Tabula Muris Consortium et al., 2020) (“alveolar macrophage” from 776 

cell_ontology_class_reannotated (https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-777 

muris-senis/)) for each age (1, 3, 18, 21, 30 months). We clustered the AM (k = 20, r = 0.1) on the 778 

top 10 PC computed on all genes and across all cells in the gene-cell matrix and computed the 779 

average expression of AM markers (see above).  780 

Aging atlas. The cell-type-resolved differential gene expression testing between age groups was 781 

obtained (Angelidis et al., 2019) and the DEGs between AM in aged (24 months) versus young 782 

mice (3 months) were extracted (see paragraph “Differential expression analysis”).  783 

Lung connectome. The gene expression profile of human, mouse, rat, and pig (two samples per 784 

species) across lung cells was obtained (Raredon et al., 2019) (accession: GSE133747). Based on 785 

the available annotation, immune cells were extracted and the average LMNA log-normalized 786 
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expression (see paragraph “Processing of the gene-cell expression matrix”) across samples was 787 

computed. 788 

DEGs were converted to the corresponding official gene symbols (using limma v3.38.3 (Smyth, 789 

2005)) before being possibly compared across datasets. 790 

 791 

Definition of the TMS aging signature in mouse AM. Differential expression analysis was 792 

computed on each age pair and the DEGs were extracted as in paragraph “Differential expression 793 

analysis”. The DEGs for each old (18, 21, 30 months) versus young (1, 3 months) comparison are 794 

extracted. Up-(down-)regulated DEGs in one old-young comparison that are also found either 795 

down-(up-)regulated in another old-young comparison, or up-(down-)regulated in the 3 months 796 

versus 1month comparison, are filtered out. The remainder DEGs were validated using a similar 797 

boostrap procedure as the one described in paragraph “Comparison of WT versus Lmnafl/flVav1-798 

Cre in each cell population”, allowing to define a list of validated up- and down-regulated genes 799 

for each of the six old-young comparison. The TMS aging signature was defined as the union of 800 

the six validated DEG lists. 801 

 802 

Functional annotation. For a given pair of conditions, functional annotation was performed 803 

separately on the up-regulated and down-regulated DEGs (see paragraph “Differential expression 804 

analysis”). Each DEG was first converted to the corresponding official gene symbol (using limma) 805 

and then to the Entrez ID. GO-BP enrichment analysis is computed using all mouse genes having 806 

a GO annotation as background (with clusterProfiler v3.10.0 (Yu et al., 2012) and org.Mm.eg.db 807 

v3.7.0). Only GO terms containing ≥ 10 and ≤ 500 genes are considered. A cut-off of 0.1 on the 808 

adjusted p-value (Benjamini-Hochbergh) is set to define the significantly enriched GO terms. 809 
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Redundant terms (Wang similarity measure > 0.7) are removed by keeping the most significant 810 

representative. 811 

 812 

Gene set enrichment analysis. Consistency between a defined gene set (A) and a phenotype (B) 813 

was quantified using GSEA (Subramanian et al., 2005). A custom gene signature was defined as 814 

the set of up-regulated DEG between case and control in A. The phenotype was defined as the 815 

average log2FC between case and control in B and used to rank the genes. Only the genes detected 816 

in at least 10% of the cells in either case or control in the phenotype were considered for GSEA. 817 

  818 
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Supplementary Tables  819 

Table S1 Differentially expressed genes for cluster assignment. 820 

Table S2 Expression of Lmna in the Lung Connectome dataset. 821 

Table S3 Differentially expressed genes identified in clusters. 822 

Table S4 Differentially expressed genes in the alveolar macrophage cluster of irradiated mice. 823 

Table S5 Differentially expressed genes in the alveolar macrophage cluster of Tabula Muris 824 

Senis. 825 

 826 

Table S6 Sex of mice used in the study. 827 

Figure 1  
A 5 M WT 

6 M Lamin A/C CKO 
10 F WT 
7 F Lamin A/C CKO 
*sex not noted for 4 WT and 3 CKO data points 

B & C 2 F WT  
2 F Lamin A/C CKO 

D Data shown in Figure 1A 
+ 
4 F WT 
4 M Lamin A/C CKO 

E Sex not noted 
  
Figure 2  
A 2 F WT  

2 F Lamin A/C CKO 
B 7 M WT 

8 WT Lamin A/C CKO 
5 F WT 
5 F Lamin A/C CKO 

C 3 M WT 
4 M Lamin A/C CKO 
2 F WT 
2 F Lamin A/C CKO 

D 7 M WT 
8 M Lamin A/C CKO 
2 F WT 
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2 F Lamin A/C CKO 
2 M cGAS KO 
4 M Lamin A/C cGAS DKO 
2 F cGAS KO 
3 F Lamin A/C cGAS DKO 
5 M WT 
5 M Lamin A/C p53 DKO 
2 F WT 
1 F Lamin A/C p53 DKO 

  
Figure 3  
A & B 1 F 
C & D representative images and data from 4 experiments in which BAL from 2 WT mice 

was pooled 
exp 1 - 2 M 
exp 2 - 2 M 
exp 3 - 1 M, 1F 
exp 4 - 2M 

E images represenatative of 4 experiments in which BAL from 2 mice of each 
genotype was pooled 
exp 1 - 2 M WT + 2 M Lamin A/C CKO 
exp 2 - 2 M WT + 2 M Lamin A/C CKO 
exp 3 - 1 M WT + 1 F WT + 2 F Lamin A/C CKO 
exp 4 - 2 M WT + 2 M Lamin A/C CKO 

  
Figure 4  
A 2 F WT  

2 F Lamin A/C CKO 
B 10 M WT 

13 M Lamin A/C CKO 
7 F WT 
6 F Lamin A/C CKO 

C 2 F WT  
2 F Lamin A/C CKO 
2 F WT Control 
2 F WT Irradiated 

D 7 M WT 
8 M Lamin A/C CKO 
2 F WT 
2 F Lamin A/C CKO 
2 M cGAS KO 
4 M Lamin A/C cGAS DKO 
2 F cGAS KO 
3 F Lamin A/C cGAS DKO 
5 M WT 
5 M Lamin A/C p53 DKO 
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2 F WT 
1 F Lamin A/C p53 DKO 

  
Figure 5  
A not noted 
B 3 F WT 

2 M Lamin A/C CKO 
1 F Lamin A/C CKO 

  
Figure 6  
A & B 12 F WT 

12 F Lamin A/C CKO  
  
Figure 7  
A & B data from Tabula muris senis 
C 8F 
D & E 2 F WT  

2 F Lamin A/C CKO 
and data from Tabula muris senis and Lung Aging Atlas 

  
Figure S1  
 Sex not noted 
Figure S2  
A & B 5 M WT 

6 M CKO 
8 F WT 
5 F CKO 
*sex not noted for 4 WT and 3 CKO data points 

C sex not noted 
  
Figure S3  
A-C 2 F WT 

2 F Lamin A/C CKO 
  
Figure S4  
A & B 2 F WT 

2 F Lamin A/C CKO 
C representative example of data shown in Figure 2D and 4D 
  
Figure S5  
A 1F 
B representative example of data shown in Figure 3C, D and E 
C representative images and data from 1 experiment in which BAL was pooled from 2 

mice of each genotype  
2 M WT  
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2 M Lamin A/C CKO 
D representative images and data from 3 experiments in which BAL from 2 mice of 

each genotype was pooled 
exp 1 - 1 M WT + 1 F WT + 2 M Lamin A/C CKO 
exp 2 - 1 M WT + 1 F WT + 2 M Lamin A/C CKO 
exp 3 - 1 M WT + 1 F WT + 1 M Lamin A/C CKO + 1 F Lamin A/C CKO 

  
Figure S6  
A 1 M WT 

3 M Lamin A/C CKO 
4 F WT 
5 F Lamin A/C CKO 

B 6 M WT 
6 M Lamin A/C CKO 
4 F WT 
5 F Lamin A/C CKO 

C 3 M WT 
5 M Lamin A/C CKO 
5 F WT 
2 F Lamin A/C CKO 

D 2 F WT Control 
2 F WT Irradiated 

E 3 F WT 
2 M Lamin A/C CKO 
1 F Lamin A/C CKO 

  
Figure S7  
A 12 F WT 

12 F Lamin A/C CKO 
B-D 3 F WT 

3 M WT 
3 F Lamin A/C CKO 
3 M Lamin A/C CKO 

  
Figure S8  
A & C 8 F 
B 2 F WT  

2 F Lamin A/C CKO 
and data from Tabula muris senis 

 828 

  829 
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Table S7 Antibodies used in the study. 830 

Surface FACs antibodies Source Identifier 

V500 Mouse anti-Mouse CD45.2 Clone 104 BD Biosciences 562129 

PE Mouse Anti-Mouse I-A[b] Clone AF6-120.1 BD Biosciences 553552 

FITC Mouse Anti-Mouse I-A[b] 
Clone AF6-120.1 

BD Biosciences 553551 

Anti-Mouse CD11c PE-Cyanine7 Clone N418 eBioscience 25-0114-82 

Anti-Mouse CD11b PerCP-Cyanine5.5 Clone M1/70 eBioscience 45-0112-82 

Alexa Fluor® 700 Rat Anti-Mouse CD24 Clone 
M1/69 

BD Biosciences 564237 

APC anti-mouse CD64 (FcγRI) Clone X54-5/7.1 Ozyme 139306 

Anti-Mouse CD103 (Integrin alpha E) eFluor® 450 
Clone 2E7 

eBioscience 48-1031-82 

PE-CF594 Rat Anti-Mouse Siglec-F Clone E50-2440 BD Biosciences 
 

562757 

PerCP-Cy™5.5 Rat Anti-Mouse Siglec-F Clone E50-
2440 

BD Biosciences 
 

565526 

PE anti-mouse TCR β chain Antibody Clone H57-597 Ozyme 
 

BLE109208 

Anti-Human/Mouse CD45R (B220) eFluor® 450 
Clone RA3-6B2 

eBioscience 
 

48-0452-80 

APC Rat Anti-Mouse Ly-6G and Ly-6C Clone RB6-
8C5 

BD Biosciences 
 

553129 

PE anti-mouse CD88 (C5aR) Clone 20/70 Ozyme 
 

BLE135805 

PE Rat IgG2b, kappa Isotype control Clone RTK4530 Ozyme 
 

BLE400607 

Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc 
Block™) Clone 2.4G2 

BD Biosciences 553142 

V500 Rat anti-Mouse CD4 Clone RM4-5 
 

BD Biosciences 560782 

Pacific BlueTM Rat Anti-Mouse CD8a Clone 53-6.7 BD Biosciences 558106 
APC Rat Anti-Mouse CD8a Clone 53-6.7 BD Biosciences 561093 

PerCP-CyTM5.5 Mouse Anti-Mouse NK-1.1 Clone 
PK136 

BD Biosciences 561111 

PE-CyTM7 Rat Anti-Mouse CD62L Clone MEL-14 
 

BD Biosciences 560516 

Alexa Fluor® 700 Rat Anti-Mouse CD44 Clone IM7 BD Biosciences 560567 
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CD317 (PDCA-1) Antibody, anti-mouse 

Clone JF05-1C2.4.1 
Miltenyi Biotec 130-102-828 

PE-Cy™7 Rat Anti-Mouse IgM Clone: R6-60.2 
 

BD Biosciences 552867 
 

PerCP-Cy™5.5 Rat Anti-Mouse CD16/CD32 clone 
2.4G2 

BD Biosciences 560540 

Anti-Mouse CD34 Alexa Fluor® 700 clone RAM34 eBioscience 56-0341-82 
APC anti-mouse CD117 (c-Kit) Antibody clone 2B8 Biolegend 105812 

Anti-Mouse CD135 (Flt3) PE clone A2F10 eBioscience 12-1351-82 
Pacific Blue™ anti-mouse Ly-6A/E (Sca-1) Antibody  

clone D7 
Biolegend 108120 

PE/Cy7 anti-mouse CD150 (SLAM) Antibody clone 
TC15-12F12.2 

Biolegend 115914 

Brilliant Violet 510™ anti-mouse CD48 Antibody 
Clone HM48-1 

Biolegend 103443 

PE/Dazzle™ 594 anti-mouse CD127 (IL-7Rα) 
Antibody Clone A7R34 

Biolegend 135031 

   
Intracellular FACs antibodies Source Identifier 

PE Rat Anti-Mouse CD63 
Clone NVG-2 

BD Biosciences 564222 

PE Rat IgG2a, κ Isotype Control  Clone R35-95 BD Biosciences 553930 
Alexa Fluor® 647 Mouse anti-H2AX (pS139) Clone 

N1-431 
BD Biosciences 560447 

Alexa Fluor® 647 Mouse IgG1 κ Isotype 
control Clone MOPC-21 

BD Biosciences 557783 

PE Mouse Anti-H2AX (pS139) Clone N1-431 BD Biosciences 562377 
PE Mouse IgG1, κ Isotype Control Clone MOPC-21 BD Biosciences 554680 

   
Immunofluorescence antibodies (primary) Source Identifier 

Purified Rat Anti-Mouse Siglec-F Clone E50-2440 BD Biosciences 
 

552125 

mouse Monoclonal antibody to BAF Clone A-11 Clinisciences 
 

sc-166324 

Monoclonal Anti-Lamin A/C antibody produced in 
mouse 

Clone 4C11 

Sigma 
 

SAB4200236 

Anti-phospho-Histone H2A.X (Ser139) Antibody, 
Clone JBW301 

Sigma 
 

05-636 

CD11c Monoclonal Antibody, Clone N418 eBioscience 14-0114-82 
LAMP1 Polyclonal Antibody ThermoFischer PA1-654A 

Anti-dsDNA 
Antibody, Clone HYB331-01 

Santa Cruz 
Biotechnology 

sc-58749 

   
Immunofluorescence antibodies (secondary) Source Identifier 
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Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 647 

Invitrogen A-21247 

Goat anti-Hamster IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488 

Invitrogen A-21110 

Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 555 

Invitrogen A21434 

Goat anti-Mouse IgG2a Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488 

Invitrogen A21131 

Goat anti-Mouse IgG1 Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 647 

Invitrogen A21240 

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 647 

Invitrogen A-21245 

Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488 

Invitrogen A-11029 
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 48 

Supplementary figure 1 Analysis of immune cells in Lamin A/C CKO mice. 833 

 (A) Flow cytometric analysis of WT vs Lamin A/C CKO macrophage and dendritic cell (DC) 834 

populations in spleen, with gating strategies for each population represented by colored gating. 835 

Left, representative example of the gating strategy. Right, percentage of each population of live 836 

spleen cells and absolute counts (n = 4 mice, combined from 2 independent experiments, bar 837 

indicates mean ± SD, one-way ANOVA with Šidák test). 838 

(B) Flow cytometric analysis of WT vs Lamin A/C CKO Nature killer, T and B cell populations in 839 

spleen and lymph nodes, with gating strategies for each population represented by colored gating. 840 

Top, representative example of the gating strategy. Bottom, percentage of each population of live 841 

spleen or lymph node cells and absolute counts (n = 5-8 mice, combined from 4 independent 842 

experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test).  843 

(C) Flow cytometric analysis of WT vs Lamin A/C CKO to analyze hematopoietic stem cell (HSC) 844 

and plasmacytoid dendritic cell populations in bone marrow, with gating strategies for each 845 

population represented by colored gating. Top, representative example of the gating strategy. 846 

Bottom, percentage of each population of live bone marrow cells cells and the absolute counts (n 847 

= 4-6 mice, combined from 3 independent experiments, bar indicates mean ± SD, one-way 848 

ANOVA with Šidák test). Acronyms used: Short term HSC (ST-HSC), Multipotent hematopoietic 849 

progenitor (MPP), common myeloid progenitor (CMP), common lymphoid progenitor (CLP), 850 

granulocyte macrophage progenitor (GMP), megakaryocyte-erythroid progenitor (MEP), 851 

plasmacytoid dendritic cell (pDC).  852 

 853 

  854 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480837
http://creativecommons.org/licenses/by-nc-nd/4.0/


89
981

39
6137

26

5

20

0.9

7

20

0.9 7

26

582

90

S
S

C

C
D

11
c

CD103 SiglecF

S
S

C

CD64

S
S

C

MHCII

MHCII

C
D

11
c

MHCII

C
D

10
3

CD11b

C
D

11
b

SiglecF

65

20

56

30

1

1

gated on live 
CD45.2+

gated on live 
CD45.2+

gated on live
CD45.2+SSChiMHCint gated on AM

AM

SiglecF+
 AM

gated on live 
CD45.2+

gated on live 
CD45.2+ CD64- 

eosinophils

gated on live 
CD45.2+ MHCIIhi

gated on live 
CD45.2+ MHCIIhi 

CD11c+

CD103+ DC

CD11b+ DC

46

54

S
S

C

CD45.2

gated on live

WT

Lamin A/C
CKO

WT

Lamin A/C
CKO

WT

Lamin A/C
CKO

WT

Lamin A/C
CKO

A

B C

0

5

10

15

20

%
 S

ig
le

cF
+ 

AM
 o

f L
IV

E

Lmnafl/fl LysM-Cre cohort

W
T 

La
min 

A/C

CKO

Figure S2

%
 o

f L
IV

E

ns
AM

SiglecF+
AM eosinophils

CD103+

DC
CD11b+

DC

0

1

2

3

4

5

interstitial
macrophages

ns ns ns

W
T

La
min 

A/C

CKO
W

T 
W

T 
W

T
W

T

La
min 

A/C

CKO
La

min 
A/C

CKO
La

min 
A/C

CKO
La

min 
A/C

CKO

ab
so

lu
te

 c
ou

nt
s

W
T

La
min 

A/C

CKO

0

1 105

2 105

3 105 ns ns ns ns

S
S

C

CD64

C
D

11
c

SiglecF

C
D

11
b

SiglecF

gated on live 
CD45.2+

gated on live 
CD45.2+ SSChiCD64+ 

gated on live 
CD45.2+ SSChiCD64+

CD11c- SiglecF-  

WT

Lamin A/C
CKO

AM interstitial macrophages

9

1

84

17

3

23

95

97

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

Supplementary figure 2 Analysis of immune cells in lungs of Lamin A/C CKO mice. 855 

(A) Representative flow cytometric analysis of WT vs Lamin A/C CKO lung immune populations 856 

including AM, eosinophils, interstitial macrophages, CD103+ DC and CD11b+ DC with gating 857 

strategies for each population represented by colored gating. 858 

(B) Percentages and absolute counts of AM, eosinophils, interstitial macrophages, CD103+ DC 859 

and CD11b+ DC of live WT vs Lamin A/C CKO lung cells (n = 14-17 mice, combined from 9 860 

independent experiments, bar indicates mean ± SD, one-way ANOVA with Šidák test). 861 

(C) Percentage of AM (CD45.2+SSChiMHCintSiglecF+) following flow cytometric analysis of WT 862 

(Lmnafl/fl LysM-Cre-/-) vs Lmnafl/fl LysM-Cre+/-  lung (n = 4 mice combined from 2 independent 863 

experiments, bar indicates mean ± SD, unpaired t test).  864 
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Supplementary figure 3 scRNAseq analysis of lung immune cells in WT and Lamin A/C CKO 867 

mice. 868 

(A) Heatmap showing the expression of cluster-specific gene markers. Differential expression 869 

analysis is done for each cluster against all the other cells (including the contaminants). Among the 870 

top 50 significant DEGs, the 10 DEGs with the top fold change are shown. Common DEGs between 871 

clusters are reported only once. Entries are the z-scores of the normalized expression level, clipped 872 

to fit the interval. 873 

(B) tSNE representation showing WT (left) and Lamin A/C CKO (right) cells only, and colored by 874 

replicate. In WT, replicate 1 contains 4075 cells and replicate 2 contains 3980. In Lamin A/C CKO, 875 

replicate 1 contains 4000 cells and replicate 2 contains 3677. 876 

(C) tSNE representation showing WT cells (top) and Lamin A/C CKO cells (bottom). Cells are 877 

colored with a gradient representing the normalized expression level of immune and alveolar 878 

macrophage markers. 879 
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 51 

Supplementary figure 4 DNA damage and related markers in alveolar macrophages of Lamin 882 

A/C CKO mice. 883 

(A) Gene ontology enrichment analysis of DEGs upregulated in Lamin A/C CKO, specific to the 884 

AM cluster. Significant terms (adjusted p-value < 0.01) from the biological process (BP) ontology 885 

are shown. 886 

(B) Violin plot showing the normalized expression of Cdkn1a in the AM cluster, with values for 887 

individual WT and Lamin A/C CKO replicates shown. 888 

(C) Representative intracellular flow cytometric analysis of mice from WT (Lmnafl/fl Vav1-Cre-/-) 889 

vs Lamin A/C CKO (Lmnafl/fl Vav1-Cre+/-) and and WT (Lmnafl/fl p53fl/flVav1-Cre-/-) vs Lamin A/C 890 

p53 DKO (Lmnafl/fl p53fl/flVav1-Cre+/-) to identify AM (CD45.2+SSChiMHCintSiglecF+) and assess 891 

gH2AX levels. 892 
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Supplementary figure 5 Live imaging of alveolar macrophages in lungs. 895 

(A) AM from WT mouse lung (female) undergoing constricted migration in vivo. Top left, XY and 896 

XZ planes. Bottom left, contour representation. Right, measurement of the cell width at the most 897 

acute point of squeezing. 898 

(B) BAL from Lamin A/C CKO mice confined at a height of 2 µm for 1.5 hours and subsequently 899 

stained for DAPI, BAF and SiglecF (representative of n = 4 independent experiments, each time 900 

BAL was pooled from 2 mice aged 8-26 weeks). 901 

(C) BAL from WT and Lamin A/C CKO mice confined at 2 µm and 10µm for 1.5 hours and 902 

subsequently stained for DAPI, Lamin A/C and SiglecF. Left, representative field. Right, 903 

quantification of mean intensity of the Lamin A/C intensity (violin plot with lines indicating the 904 

median and quartile values, representative of 2 independent experiments, one-way ANOVA with 905 

Tukey test, each time BAL was pooled from 2 mice of each genotype). 906 

(D) Quantification of circularity, aspect ratio and roundness of nuclei from WT and Lamin A/C 907 

CKO BAL. BAL was stained with Hoescht, confined at 2 µm and imaged immediately. Left, 908 

representative field. Middle, values of individual cells in one experiment (violin plot with lines 909 

indicating the median and quartile values, Kolmogorov-Smirnov test). Right, means of 3 910 

independent experiments (unpaired t-test). For each experiment BAL was pooled from 2 mice of 911 

each genotype aged 10-27 weeks. In the experiment shown, the cells were also stained for CD11c 912 

and SiglecF prior to confinement to quantify nuclear shape specifically in AM. Bars indicate mean 913 

± SD. 914 
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Supplementary figure 6 Analysis of markers in Lamin A/C CKO mice, scRNAseq of 917 

irradiated mice and CD63 expression in knock-out mice. 918 

(A) Left, intracellular flow cytometric analysis of WT vs Lamin A/C CKO lung for CD88 919 

levels within AM (CD45.2+SSChiMHCintSiglecF+). Right, mean fluorescence intensity (MFI) of 920 

CD88 signal normalized to isotype control (n = 5-8 mice, combined from 3 independent 921 

experiments, mice aged 28-39 weeks, bar indicates mean ± SD, unpaired t test). 922 

(B) Cathepsin L activity in BAL extracted from WT vs Lamin A/C CKO mice (n = 10-11 mice 923 

from 8 independent experiments, bar indicates mean ± SD, aged 13-34 weeks, unpaired t-test). 924 

(C) Flow cytometric analysis of BAL obtained from WT vs Lamin A/C CKO mice to analyze 925 

neutrophils, T and B cells with gating strategies for each population represented by colored gating. 926 

Left, representative example. Right, percentage of each population of live BAL cells and absolute 927 

counts of each population in extracted BAL (n = 7-8 mice, combined from 4 independent 928 

experiments, mice aged 24-34 weeks, bars indicate mean ± SD, one-way ANOVA with Šidák test). 929 

(D) Heatmap showing single cell gene expression (z-score) of DEGs in AM 5 months post-17Gy 930 

irradiation and non-irradiated controls. Cells are grouped by condition. DEGs are divided among 931 

up- and down-regulated in case vs control, clustered with a ward.D2 method computed on 932 

euclidean distances and shown as dendrogram. DEGs are annotated with log2 fold change (FC) 933 

values. 934 

(E) Intracellular flow cytometric analysis for CD63 levels within AM 935 

(CD45.2+SSChiMHCintSiglecF+) of WT vs CD63 KO lung single cell suspension, treated as 936 

indicated. MFI of CD63 normalized to isotype control (n = 3 mice in one experiment, mice were 937 

19 weeks of age, bars indicate mean ± SD, one-way ANOVA with Šidák test).  938 
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Supplementary figure 7 Influenza infections in Lamin A/C CKO mice. 941 

(A) Percentage of day 0 weight observed each day post infection with 50 pfu influenza A virus via 942 

the intranasal route in WT and Lamin A/C CKO mice (n = female 12 mice per genotype, combined 943 

from 2 independent experiments, two-way ANOVA with Tukey test, bars indicate mean ± SD).  944 

(B) Survival of WT vs Lamin A/C CKO mice following infected with 100 pfu of influenza A virus 945 

PR8 via the intranasal route (n = 6 mice per genotype in one experiment, Log-rank Mantel-Cox 946 

test). 947 

(C) Percentage of day 0 weight observed each day post infection described in (B). Curves of 948 

average ± SEM weights are shown and continued until a first death occurs in the group. 949 

(D) Percentage of day 0 weight observed each day post infection described in (B) (two-way 950 

ANOVA with Tukey test, bars indicate mean ± SD). 951 
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Supplementary figure 8 Hallmarks of aging in alveolar macrophages. 954 

(A) Percentage AM (CD45.2+SSChiMHCintSiglecF+) of live lung cells in Young (14 weeks) vs Old 955 

(63 weeks) mice (n = 4 mice combined from 2 independent experiments, bars indicate mean ± SD, 956 

unpaired t test). 957 

(B) Normalized enrichment scores (NES) and adjusted p-values following gene set enrichment 958 

analysis of the indicated upregulated or downregulated genes. Left, TMS gene sets enrichment in 959 

Lamin A/C CKO vs WT transcriptome. Geneset obtained after individual pairwise time-point 960 

comparisons and overall aging signature were tested. Right, Lamin A/C CKO gene sets enrichment 961 

in TMS transcriptome, ranked by the indicated time-point comparisons. n genes in sets indicates 962 

the number of genes in given gene set detected in the tested transcriptome. 963 

(C) Young (14 weeks) vs Old (63 weeks) lung single cell suspension was directly analyzed or 964 

incubated with DMSO or 50 µM etoposide for 1 hour. Intracellular flow cytometric analysis for 965 

gH2AX levels within AM (CD45.2+SSChiMHCintSiglecF+) was then performed. The geoMFI of 966 

gH2AX signal is shown normalized to isotype control (n = 4 mice from 2 independent experiments, 967 

bars indicate mean ± SD, one-way ANOVA with Šidák test). 968 
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Movie 1 Live imaging of a wild-type mouse lung. 970 

The lung was imaged after administration of Hoechst and an anti-SiglecF antibody. Left is a broad 971 

field of a lung region, right features individual AM (SiglecF+) demonstrating constricted migration 972 

(white boxes). 973 

 974 

Movie 2 A single AM undergoing constricted migration in vivo. 975 

Left, contour representation. Right, XY and XZ planes. 976 
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