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A B S T R A C T

This article studies the ISA-extension and application-specific soft error sensitivity of the RISC-V VeeR EH1
commercial processor core from Western Digital. To this end, a modified VeeRwolf SoC from Chips Alliance
was deployed in a Digilent Nexys-A7 FPGA. Then, a fault injection platform was created for injecting soft errors
in all architectural and micro-architectural registers of the VeeR EH1, without modifying the original processor
core, when executing a set of commonly used space-related algorithms. Errors were categorized according to
the consequences that they had on the normal execution of the processor, as well as to the unit of the core
they were injected in. By changing compiling targets, four different combinations of RISC-V ISA extensions
were also tested and compared, in the same processor IP, for a typical dot product algorithm, a hyperspectral
imaging difference calculation and a SHA-256 hash. Experimental results will show how, for each one of these
three case studies, the functionally equal binaries issued when compiling these programs using different ISA
extensions are affected in different ways by error injections, opening the possibility to selectively compile
functions based on a desired reliability/speed factor. The results additionally identify the specific units and
subUnits within the processor’s structure that have been affected, pinpointing the exact element where the
bitflip occurred, after detecting an error.
. Introduction and related work

RISC-V Instruction Set Architecture (ISA) is having an overwhelming
cceptance, in particular in space applications, and it is called to
e the ISA replacement for the current SPARC and PowerPC ISAs
n Europe and in the USA respectively [1–3] due to its market neu-
rality, royalty-free model and good industry support. Early RISC-V
ad-hard projects are aiming at much higher performance per watt
nd area efficiency [4], while still maintaining the low error rate
n harsh environments. At the same time, a dynamic ecosystem of
ompanies, tools and professionals contributes in the creation of even
etter opportunities for this ISA to thrive.

.1. Space context and new players

Electronic components in space are exposed to ionizing radiation
hat may affect them temporarily (soft-errors) or permanently (hard-
rrors). As maintenance in space is usually not possible, different
echniques have been applied to mitigate these effects, either by con-
truction process, such as Silicon-On-Insulator (SOI) and triple well, or
y circuit design, by adding redundancy at different levels, normally
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impacting on area and performance [5]. These radiation-hardened
components are commonly referred to as Radiation-Hardened By Process
(RHBP) and Radiation Hardened By Design (RHBD) respectively [6]. ISO
standard 16290:2013 [7] defines the Technology Readiness Level (TRL)
for space hardware, presenting nine different levels ranging from lab-
oratory components (levels 1–4) to simulation-ready prototypes (levels
5, 6) and deployed components (levels 7–9). The qualification for ob-
taining TRL 8 (pre-flight) is usually long and expensive. Achieving TRL
9 (flight-proven) requires two years of deployment, therefore, qualifying
components for space missions impacts heavily on time, cost, area and
performance. For instance, the Mars 2020 Rover’s brains are based on
the BAE RAD 750 processor [8]. This rad-hard microprocessor, based
on the PowerPC 750, was first launched in 2005 on NASA’s Deep
Impact, XSS-11, and Mars Reconnaissance Orbiter missions. Up to date,
28 RAD 750 processors have been launched [9] and, although BAE
has a replacement processor ready, years-old technology is being used
for space missions. On the other hand, RISC-V High Performance Space-
flight Computer (HPSC), a 12-core RISC-V processor project for NASA,
increases computing performance by a 1000-fold when compared with
processors currently flying in space [3]. As space applications evolve,
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more computing power is required and, therefore, qualification cycles
must be shortened for certain non mission-critical processors, where
soft errors could be mitigated, allowing for a small Failure In Time
(FIT) number in exchange for a much bigger performance in less area
and with a much smaller price tag. This trend is accelerated in an
environment where private companies are entering the space industry.
SpaceX, Facebook, Google or Amazon, among others, have moved the
number of space electronics to a new level. As of January 2023, a
total of 6718 satellites were orbiting Earth. SpaceX alone owns 3395
of them, a whooping 50.5%, considering all were launched in the past
four years [10].

1.2. Previous research on RISC-V soft errors

Since the introduction of RISC-V, several studies have been con-
ducted on the mitigation of the Soft Error Rate (SER), using different
platforms and techniques. Triple Modular Redundancy (TMR) and Error
Correcting Codes (ECC) were applied to a Shakti processor targeting
a 55 nm bulk Application Specific Integrated Circuit (ASIC), offering
fine-grain error detection [11]. TMR, alongside Hamming codes for pro-
tecting registers, is also used to harden the Arithmetic Logic Unit (ALU)
and the control unit on a custom, low-cost RV32I processor testing
CCSDS-123, a hyperspectral image compression algorithm running on
a Xilinx Zynq ZC7020 [12]. Partial TMR is also applied to a Klessydra-
T03 [13] multi-threaded soft processor, obtaining similar resilience to
Single Event Effects (SEEs) when compared to full TMR in the same
processor. Dual-Core LockStep (DCLS) is also applied as the main fault-
tolerance technique in a custom-made RISC-V processor [14]. Several
authors have used the Soft Error Mitigation (SEM) IP [15] from Xilinx
for FPGA SRAM configuration memory protection, using scrubbing tech-
niques, while testing soft errors on lowRISC processors [16], concluding
that sensitivity is similar to other processors [17]. Other authors have
focused on characterizing different modules and identifying critical bits
in lowRISC [18] and Rocket [19] processors [20]. Some studies modify
the processor at the Register Transfer Level (RTL) to test security on
hidden registers on the Rocket processor [21] and obtain errors by
module [22], concluding that there is a correlation between errors in
different RISC-V processors that is not observed in other architectures.
The UNSHADES1 project [23] inserts additional lines to the clock
enable signals of the flip-flops and use partial reconfiguration on Xilinx
Virtex FPGAs. This project has evolved into the FT-UNSHADES2 [24–
26] offering a fast prediction of radiation effects in digital designs.
Neutron radiation tests and TMR mitigation have also been explored
into commercial FPGAs for the Taiga processor [27], the VexRiscv
processor [28,29] and on the PolarFire FPGA [30], also used to expose
a LowRISC soft processor to heavy ions [31].

Virtual Platforms (VP) and simulations may also be used for non-
intrusive testing. Platforms like GEM5 [32] or QEMU [33] and frame-
works such as SOFIA [34–36] explore the sensitivity against SEUs
in a virtualized environment, at a much higher speed but without
representing many microarchitecture features and memory behavior,
therefore their accuracy in terms of performance and fault tolerance
is very limited. In other words, the granularity of these platforms is
considerably lower than that of emulation-based techniques. Due to
these limitations, these virtual environments are usually recommended
for testing during the first stages of design [6].

Finally, some authors have explored mitigation techniques based
on software modifications on unmodified hardware. A modified C
compiler, including extra instructions generating software redundancy,
achieving a 2x–35.9x increase in Medium Work To Failure (MWTF) was
used on a Commercial Off-The-Shelf (COTS) SiFive HiFive board [37]
running matrix multiplication and SHA-256 algorithms, respectively,
under neutrons [38]. Recently, Lodèa et al. [36] have shown, using
SOFIA, that different compiler optimization options for a RISC-V ISA,
thus producing different binaries, have an impact on the error rate and
type when injecting soft errors, observing a 96% increase in program
hangs when using the -O2 optimization option as compared with using
2

the -O0 option.
1.3. Original contributions of this work

This work studies the SEE sensitivity of the COTS VeeR EH1 RISC-
V processor by means of fault emulation on an FPGA. Although some
works in the literature have addressed this problem before, mainly with
academic RISC-V based architectures, the original contributions of this
work with respect to the state of the art are listed below:

• The target core is a COTS device that is expected to have a
broad deployment in the market in the future [39]. The analysis
of experimental results study presented in this article is also a
contribution since previous works on COTS processors focused on
exposing an ASIC or commercial FPGA to radiation [30,38].

• This work studies the influence that including different combi-
nations of ISA RISC-V extensions has in the SEE sensitivity of
the VeeR EH1 processor, which to the best knowledge of the
authors, has never been done so far. For this purpose, three space
relevant applications will be evaluated for different extension
combinations (RV32I, RV32IC, RV32IM and RV32IMC): a dot
product function, a CCSDS-123.0-B-2 hyperspectral compression
algorithm and a SHA-256 hash function, each of them having dif-
ferent workloads and features. This will make possible to identify
which ISA-application pairs are especially resilient (or sensitive)
against SEEs.

• The fault injection system, running on an FPGA emulation ab-
straction level, targets both architectural and microarchitectural
(hidden) registers without affecting the RTL design nor changing
processor timings, which, at this abstraction level, may prevent
a commercial processor to cease working altogether. In this re-
gard, related works either modify the processor core, run the
fault injections at a different abstraction layer, or do not target
all cpu registers (architecture and microarchitecture), therefore
providing different data.

Table 1 presents a compilation of significant related articles and their
main magnitudes.

2. Veer EH1 RISC-V (RV32IMC) processor from Western Digital

Western Digital is one of the founding members of the RISC-V
International organization [40], created in 2015 to standardize and
promote the RISC-V ISA and its software and hardware ecosystem.
In 2019, Western Digital developed and open-sourced, through CHIPS
Alliance [41], its VeeR EH1 Core (formerly known as SweRV EH1),
based on the RV32IMC non-privileged specification. VeeR EH1 is a
superscalar, 9-stage pipeline, in-order processor that achieves a 4.9–5.0
CoreMark/MHz score in an area range of 0.1 mm2 at 28 nm TSMC [39,
42]. EH1 is planned to be deployed in a billion storage controllers,
providing an extensive test-field for its performance and reliability.
Alongside this design, Western Digital has also open-sourced two other
cores based on the EH1 design and the RV32IMC ISA: The VeeR EL2,
a low-power implementation using a 4-stage pipeline with a perfor-
mance of 3.6 Coremark/MHz; and the VeeR EH2, a dual-thread, 9-stage
pipeline RV32IMAC implementation achieving 6.3 CoreMark/MHz and
targeting 1.2 GHz at 16 nm.

VeeR EH1 RTL is available with no encryption, although the docu-
mentation on its microarchitecture is scarce. There is, however, com-
mercial support available from Codasip. Additionally, Imagination
Technologies launched in 2020 its Imagination University Program (IUP)
- RVFPGA [43], providing training materials and laboratory workbooks
for computer engineering students. These materials are built around
the VeeR EH1 and providing some details on its microarchitecture. The
VeeR EH1 1.8 core block structure is shown in Fig. 1 and uses 12,328
flip-flops, including those visible at the architecture level, such as the
general purpose registers or the performance counters and the internal,

microarchitecture-only elements. A breakdown of the core units and
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Table 1
Related work comparison.

Author Ref. Year Processor Abstraction Injection Core Core registers RISC-V Injections Number of Metrics
type method modifications tested ISAs binaries tested

N. Gupta et al. [11] 2015 Academic RTL Simulation XOR gates Yes Architecture and 1 Unknown Synthetic set - Percentage
microarchitecure Unknown

Ramos et al. [17] 2017 Academic FPGA Emulation FPGA CRAM No None 1 10,000 6 Percentage

Cho et al. [22] 2018 Academic FPGA Emulation XOR gates Yes Architecture and 1 80,000 11 Percentage
microarchitecure

Olivieri et al. [13] 2019 Academic RTL Simulation TCL signal No Architecture and 1 Unknown 3 Error count
invert microarchitecure

Mohseni et al. [18] 2019 Academic FPGA Emulation FPGA CRAM No None 1 10,000 7 Percentage

Laurent et at. [21] 2019 Academic RTL Simulation TCL signal No Architecture and 1 Unknown 1 Qualitative
invert microarchitecure

Wilson et al. [27] 2019 Academic FPGA Radiation FPGA Radiation No All SoC 1 Neutron 1 Error count

Dong et al. [30] 2019 Commercial FPGA Radiation FPGA Radiation, No All SoC 1 Proton 1 Qualitative
Emulation

Bandeira et al. [35] 2019 Reference VP Simulation Simulation No Architecture 1 800 1 Percentage
Definition

Santos et al. [12] 2020 Academic RTL Simulation TCL signal No Architecture and 1 100 3 Error count
invert microarchitecure

Aranda et al. [20] 2020 Academic FPGA Emulation FPGA CRAM No None 1 27,000 Synthetic set - Percentage
4

Oliveira et al. [31] 2020 Academic FPGA Radiation FPGA Radiation No All SoC 1 Heavy ions 3 MWBF

Oliveira et al. [31] 2020 Academic FPGA Emulation FPGA CRAM No None 1 Unknown 3 Percentage

James et al. [38] 2020 Commercial ASIC ASIC Radiation No All SoC 1 Neutron 2 MWTF

Marques et al. [14] 2021 Academic FPGA Emulation Software No Architecture 1 100,000 1 Percentage

Lodéa et al. [36] 2022 Academic VP Simulation Simulation No Architecture 1 17,000 50 Percentage

This article 2023 Commercial FPGA Emulation Partial No Architecture and 4 38,800 10 Percentage
reconfiguration microarchitecure
Fig. 1. VeeR EH1 block diagram [42].
subUnits, stating the number of flip-flops and a short description, is
presented in Table 2.

ChipsAlliance offers an SoC [44] built around VeeR EH1 that
adds a boot ROM, SDRAM support, an Universal Asynchronous Receiver
Transmitter (UART) and a basic implementation of General Purpose
Input/Output (GPIO) ports, running on a Digilent Nexys A7 (previously
known as the Nexys 4 DDR). The research in this paper uses a modified
3

version of this SoC, whose modifications are described in the following
section, where the fault injection platform is explained in detail.

3. The fault injection platform

Our injection platform aims at testing effects for Single Event Upsets
(SEUs) in both architectural and microarchitectural (i.e., not accessible
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Table 2
VeeR EH1 1.8 : 12,328 Flip-Flop breakdown per unit/subUnit.

Unit Flip-Flops Description

DEC 4165 Instruction decoder unit
arf 992 Register file
decode 1227 Control signal generator
instbuff 544 Instruction buffers
tlu 1402 Commit/WB, flushing, exceptions

EXU 2299 Execution unit
alu 705 Early and late ALU
ap 144 ALU packet control
flush 256 Pipeline flushing
mul_div 323 Multiplier and divider
other_exu 123 Other EXU components
pp 292 Predict packet
src 456 Stage registers

IFU 3279 Instruction fetch unit
aln 855 Instruction alignment
bp 1506 Branch predictor
ifc 107 Fetch pipe control
mem_ctl 811 CCM and Cache control

LSU 2362 Load & Store unit
bus_intf 1135 Bus interface
clkdomain 6 Clock domain crossing
dccm_ctl 89 DCCM Control
lsu_i0_valid 5 Control for pipe
lsu_lsc_ctl 571 Load reserve/store control
lsu_single_ecc_err_dc 2 Error signaling
stbuf 554 Store buffer for DCCM

MEM 117 Memory controller
PIC 106 Interrupt controller

by the programmer) registers and flip-flops. To this end, we decided
to test the unmodified VeeR EH1 core, as made available by Western
Digital, running on an FPGA. The injection platform does not cover
configuration bits within the FPGA as publicly available IPs, such as
SEM IP from Xilinx, do a very good work in this regard. Note that
characterizing FPGA configuration changes due to SEUs [17,20] is not
in the scope for this research. However, previous works [43,45,46] have
found that VeeR EH1 is very sensitive to time constraints, so changing
the core itself to enable injections [22,23,47] would most likely lead to
unexpected behavior or failures in the execution.

The procedure used to perform a bitflip is described below. This
methodology was also used in a previous work made by the au-
thors [48], although in that occasion, it was for the identification of
bitflips occurred in FFs of the Nexys A7 FPGA:

1. The system clock is stopped (actually it is stretched).
2. A GCapture operation is issued to the FPGA via the JTAG inter-

face. As a result, the state of every FF in the design is copied to
the FPGA Configuration RAM (CRAM).

3. The frame f containing the FF where the injection is to be
performed is read. The address of f and the offset of that FF
within f is obtained from the logic location (.ll) file generated
by the synthesis tools.

4. The bitflip is made on the bit of f that was selected in the
previous step and the modified f is written back on the CRAM.

5. A GRestore operation is issued to initialize the values of all FFs
to the ones indicated in the CRAM. As a result, all FFs will keep
the same values that they had when GCapture was made (Step
2) except the FF that was modified in Step 4.

6. Finally, the system clock is restarted.

The proposed injection platform is based on an external controller,
running on a Raspberry Pi computer (RPi), connected to the modi-
fied VeeRwolf SoC running in the FPGA through its Peripheral Module
(Pmod) connectors and the RPi GPIO ports. It comprises the blocks
4

shown in Fig. 2:
• FPGA synthesized hardware:

– Chronometer and clock control (CCC): Supporting cycle-
accurate injections at any point during the execution, the
processor is frozen when a specific cycle-count is reached.

– Injection Peripheral (INJP): It is connected to the VeeR
EH1 core, enabling the control of the chronometer and
the transmission of information to an external control sys-
tem running in a RPi, as also indicated in Fig. 2. The
injection point request, chronometer start/stop and commu-
nication are all controlled from the software running in the
VeeR EH1 processor, allowing relative injections from an
execution point/subroutine within the tested program.

• External control unit (RPi):

– Injection Database: A SQL database contains the bit-
streams, the flip-flop list and the injection plan, organized
into experiments and batch-runs, or campaigns, per experi-
ment. It also records the experiments results.

– Control application and logging: A Graphical User Inter-
face (GUI) application is provided for managing and launch-
ing the experiment campaigns, controlling the actual bit-
flips using partial reconfiguration. Once launched, the ex-
periment proceeds unattended, logging and recording the
outcome of each injection.

– Data analysis and graphics: Graphics, tables and alerts
are automatically generated from the recorded data on each
experiment, offering a comprehensive experiment cockpit.

The FPGA resources consumption for the fault injection system
(i.e., CCC and INJP components) is very small, using roughly a 1% of
the slices used by the VeeR EH1 processor. Table 3 shows a detailed
breakdown of the number of slices, slice LUTs and slice registers
available in the Artix A7 FPGA and those used in the SoC (without
CCC and INJP) and EH1 processor, compared to the CCC and the INJP
modules. Fig. 3 shows the detailed placement of the injection platform
elements alongside the whole SoC containing the Veer EH1 processor.

To accommodate the injection platform, the VeeRwolf SoC needed
to be modified. Main changes, with a brief explanation of the reason,
are listed below.

1. SRAM instead of SDRAM: As the injection platform stretches
the clock during the bit modifications in the FPGA, DRAM
content and transfer operations may be affected. Static RAM
does not suffer when the clock is altered.

2. Clock generation: VeeRwolf uses PLL for clock generation to
the LiteDRAM Core, which operates at a higher frequency than
the EH1 processor. LiteDRAM, then, generates the clock for the
processor. As LiteDRAM is not used anymore, changes are done
to the clock generation.

3. Wishbone to AXI bridge modification: The wishbone to AXI
bridge in VeeRwolf presented some limitations in memory align-
ment for peripheral communication that were not suitable for
the injection platform. These were corrected and new address
spaces were created in the SoC interconnect peripheral for includ-
ing the CCC and the INJP peripherals.

Fig. 4 presents a picture of the injection system, which offers some
advantages over other available fault-injection solutions:

• Injects on unmodified CPU cores, not affecting timing constraints.
• May be used with encrypted IPs.
• Tests architectural and microarchitectural registers and flip-flops.
• Cycle accurate, with relative injection window set by the tested

software.
• Small footprint in FPGA.

• Automatic injection campaign result cockpit and data analysis.



Microprocessors and Microsystems 105 (2024) 105021D. León et al.
Fig. 2. Block diagram of the fault injection platform that was developed for these experiments.
Fig. 3. Resources consumption of the modified VeeRwolf SoC on the Artix A7 XC7A100T FPGA, where the injection elements CCC and INJP are displayed in green and yellow,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
FPGA utilization of the injection system components (INJP and CCC), compared to the
Veer EH1 processor, the whole VeeRwolf SoC and the resources available in the Artix
A7 XC7A100T FPGA.

Entity Slices Slice LUTs Slice registers

Artix A7 XC7A100T 15,850 63,400 126,800
VeeRwolf SoC 8031 28,151 13,878
Veer EH1 7545 26,366 12,328
CCC 70 114 245
INJP 15 13 42

• Built using inexpensive and readily available components.

The proposed injection system also presents some limitations when
compared to other approaches. Running at about 0.2 s per injection
in a single test-board environment (fully parallel execution is possible
by adding more boards), it is slower than non fine-grain software
simulators, such as GEM5 [32], virtual platforms like SOFIA [34]
and, potentially, RTL-modified based testing [22] on FPGA. However,
equivalent state-of-the-art fine-grain software RTL simulators run at
as low as 1 KHz on modern CPUs [49,50] making simulation at this
granularity much slower than the proposed one.

4. Experiment conditions

For this experiment we used a set of C-language algorithms common
in space applications: dot product (DOT) (16 × 16 16-bit true-random
generated numbers), the hyperspectral algorithm CCSDS-123.0-B-2 [51]
central difference calculation (CCSDS) for a single pixel of an test image
5

Fig. 4. Photograph of the fault injection platform.

containing 36 × 100 pixels and 17 spectral bands, and a SHA-256 hash
(SHA) using a sample string defined by the user; in this case, ‘‘RISC-V’’.
These baremetal source codes are then compiled using four different
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Table 4
Details on binaries for different algorithm-ISA target combinations and the calculated number of injections (n) required in a population (N) for
an error of 1.0% with a confidence level of 95%. Cycles = execution cycles.
ISA DOT CCSDS SHA

cycles N n cycles N n cycles N n

RV32I 2241 27,627,048 9600 1859 22,917,752 9599 7745 95,480,360 9603
RV32IC 2156 26,579,168 9600 1856 22,880,768 9599 7732 95,320,096 9603
RV32IM 708 8,728,224 9593 380 4,684,640 9584 – – –
RV32IMC 724 8,925,472 9593 362 4,462,736 9583 – – –
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e

ISA targets: RV32I, RV32IC, RV32IM and RV32IMC respectively, al-
ways considering that the VeeR EH1 remains unchanged, so certain
data and control paths remained unused with some compilation targets.
The RV32I ISA is one of the frozen base ISAs for RISC-V [52], con-
taining 40 unique instructions for a 32-bit integer ALU. The standard
extensions for Compressed Instructions (C) and Multiplication and Division
(M) are also frozen and may be added to the base ISA to support 16-bit
instructions and integer multiplication and division respectively. Note
that the C compiler never used the M extension for the SHA algorithm,
therefore a compilation to the RV32I and RV32IM targets will produce
the same binaries. The same thing happens with RV32IC and RV32IMC.
For this reason, the analyses for M-enabled targets on SHA have been
omitted.

Details are shown on Table 4, showing Population (N), the number
of potential candidates for fault injection, obtained by multiplying the
number of flip-flops in the Veer EH1 core by the execution cycles and
n, the number of required injections for a confidence level of 95% and
an error margin of 1.0% as defined by the calculation presented by
Leveugle et al. [53].

𝑛 = 𝑁
1 + err2 × 𝑁−1

𝑡2×𝑝×(1−𝑝)

(1)

The p parameter corresponds to the expected percentage of errors
esulting in a failure, and, as proposed by the author, remains fixed
t 0.5. This sample gives a correct estimation on whether the program
ould succeed or fail in its execution. Afterwards, the type of failure is

dentified, as well as the conditional probability of each type of failure
iven the unit where the injection occurred.

However, an important condition for this experiment is ensuring
hat all four ISAs are exposed to exactly the same injections, which
ccur at a specific cycle in a specific flip-flop, as the binaries being
xecuted are different with each target ISA compilation. The experi-
ents expose the different binaries to the same conditions. Therefore

he fault injection campaign is cloned for each of the ISAs in all three
ested algorithms. The selected cycle model for fault injection follows

uniform distribution and, since the experiment replicates the same
njections for all ISAs and the execution speeds of the four binaries may
e different, some of them may occur after the program is finished. As
n example for the DOT, in order to make sure that the number of fault
njections carried out over 708 cycles (which is the execution time of
he fastest ISA - RV32IM) is significant enough (thus within the target
rror and confidence level), the number of injections over 2241 cycles
slowest ISA execution cycles - RV32I) has to be adjusted to 30,365.
his corresponds to a roughly 0.49% error for the longer experiments,
hile keeping the error margin below 1.0% for the shortest. The final
umber of injections was rounded up to 40,000 per experiment for this
pecific algorithm. Fig. 5 is a representation, using the dot algorithm
s an example, of the actual number of fault injections that were
erformed in each clock cycle, randomly carried out over 2241 clock
ycles, which is the execution time of this algorithm using the RV32I
SA target. This is the slowest one among the four ISAs that were tested
or this algorithm (see Table 4).

Each of the injections is performed on a clean run of the tested
rograms, recording the effect that each single event may have had
n the expected outcome of the experiment. Since the total number of
ault injections is way higher than the number of execution cycles of
6

he program, this figure shows the number of times a fault was injected
randomly in a FF of the VeeR EH1 core), in each one of the 2241
xecution cycles of the DOT algorithm.

Table 5 shows the total number of fault injections performed in
ach algorithm-ISA combination and the calculated statistical error.
he number of said injections (40,000 for DOT, 51,000 for CCDS and
0,000 for SHA) and injection points (cycle, FF) is fixed across all ISAs
or the same algorithm. However, as mentioned above, the algorithms’
xecution times decrease as the C, M and MC extensions are added,
eading to less effective injections, for a given algorithm, in ISAs with
horter execution times, as shown in the table.

We have used a modified injection classification framework as
resented by Weaver et al. and Shubu Mukherjee [5]. Each of the fault
njections is classified according to the following criteria:

• NO EFFECT: The fault injection had no effect on the expected
outcome of the program. This case is further classified attending
to whether the injection has occurred before or after the program
was finished. In the latter case, all fault injections fall into this
category as the SEU has no effect on an already completed execu-
tion of the program. This is recorded to compare different-speed
campaigns over a fixed amount of time.

• ERROR: The injection has caused the program to not end as
expected. The injection is then categorized as follows:

– SED: (Single Event Delay) - The injection has caused the
program to take more cycles (up to double the time) than
expected to finish. However, the result is correct. These
errors will be represented in green in Figs. 9, 11 and 13.

– DUE: (Detected Unrecoverable Error) - The injection has pre-
vented the program to finish in, at least, twice the time
it was expected to. Since the experiment runs baremetal
programs, the actual effect is a system halt. These errors will
be represented in yellow in Figs. 9, 11 and 13.

– SDC: (Silent Data Corruption) - The program has finished in
time, but the calculation outcome is wrong. These errors
will be represented in red in Figs. 9, 11 and 13.

epending on the application, not all errors are equally harmful. While
eal-time systems require to comply with timing constraints, some
pplications would not be severely affected by a longer execution time.
f this is the case, SED errors may be acceptable and no further action
ould be required. In other cases, a system watchdog or process in

he operating system could restart the task if it stops responding or
rashes, so, while DUE errors are more severe than SED errors, a system
ould still detect and, sometimes, even recover from DUE errors. SDC
rrors, however, could only be detected if the system knows the result
n advance or, at least, the acceptable range of results. In any case,
here would certainly be cases where the error remains undetected and
assed over to additional processing stages, potentially increasing the
amage in the correctness of the data. Hence the color coding selected
or these errors in the figures presented in the next section.

. Experimental results

A total of ten fault-injection campaigns were performed, one per
ach algorithm and ISA target combination, considering that the SHA
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Fig. 5. Injections per cycle (blue) and average injections per cycle (orange) for the DOT algorithm. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Table 5
Total number of fault injections and calculated statistical error for each algorithm and combination of ISA extensions evaluated.
ISA DOT CCDS SHA

Injections Sta. Error Injections Sta. Error Injections Sta. Error

RV32I 40,000 0.49% 51,000 0.43% 10,000 0.98%
RV32IC 38,736 0.50% 50,910 0.43% 9979 0.98%
RV32IM 12,586 0.87% 10,436 0.96% – –
RV32IMC 12,748 0.87% 9942 0.98% – –
Fig. 6. Accumulated error rate (%) per unit and fault injection step (4 ISAs), for the DOT algorithm. Note that the number of injections for the ‘‘Full CPU Core’’ lines correspond
to the aggregated addition of the remaining ones (i.e., the CPU units). For the sake of clarity, the plots have been zoomed out to the first 12,000 fault injections, as said lines do
not yield significantly different results beyond this threshold.
algorithm is only analyzed for two ISAs, as the compiler does not make
use of the M extension in this case.

Fig. 6 shows the evolution of the error rate (%) of the whole core
(‘‘Full CPU Core’’) and per unit (IFU, DEC, LSU, EXU, PIC and MEM), for
the DOT algorithm and the 4 ISAs considered (RV32I, RV32IC, RV32IM
and RV32IMC). Displayed values are stable beyond a few thousands of
fault injections, which confirms that the number of performed injec-
tions (40,000 for the DOT, see Table 5) yield consistent and reliable
results.

Fig. 7 presents the fault injection error rates of different types (SEDs,
DUEs and SDCs) for all algorithms and ISAs. Next, Fig. 8 offers a more
7

detailed view of the results, using a different arrangement in order to
classify the observed errors in the DEC, EXU, IFU and LSU Units, per
ISA and algorithm (DOT, CCSDS and SHA). MEM and PIC units have
been left out of this figure for space reasons. Since their flip-flop count
is much smaller than the other units, their error rate is not significant
and will not even be shown in the figures.

Looking at Figs. 7 and 8, one can observe that, when an SDC error is
detected, the originating injection is more likely to be in the DEC unit
and, secondly in the EXU, across all algorithms and ISAs. Similarly, DUE
errors have, primarily, originating injections in the DEC unit, followed
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Fig. 7. Error rates (%) on the RISC-V VeeR EH1 core, categorized by type (SED, DUE or SDC) per algorithm and ISA.
Fig. 8. Error rates (%) on the RISC-V VeeR EH1 core, categorized by type (SED, DUE or SDC) per relevant unit (except PIC and MEM), ISA and algorithm.
by the LSU. Lastly, SED errors appear primarily in the DOT algorithm
and, once observed, the originating unit is, almost always, the IFU.

Table 6 shows the calculation for the Architecture Vulnerability Factor
(AVF), introduced by Mukherjee [54], which is used to estimate the
failure rate of a processor by using a probability of a fault resulting in
an error in the outcome of the program. This can be estimated by per-
forming fault injections or by using an Architecturally Correct Execution
(ACE) analysis, although the latter technique may overestimate the AVF
in up to 3.5x [55]. These calculations only consider the correctness of
the result, not the potential delays, therefore only SDC and DUE errors
are accounted for. The injection campaigns result in an overall AVF of
4.0%. As detailed further in the document, most of the observed errors
originate in the decoder unit across all ISAs. Also, using an RV32IC ISA
leads towards the lowest AVF, whereas using the RV32IMC results in
the highest AVF.
8

Table 6
AVF calculations considering SDC and DUE errors.

Unit ISA Total

RV32I RV32IC RV32IM RV32IMC

DEC 7.5% 7.3% 7.9% 8.5% 7.6%
EXU 2.0% 2.2% 3.1% 3.2% 2.3%
IFU 1.4% 1.3% 2.4% 2.3% 1.5%
LSU 3.4% 2.9% 4.2% 3.8% 3.3%
MEM 1.4% 0.7% 1.5% 1.1% 1.1%
PIC 1.2% 0.3% 0.6% 0.0% 0.7%

Veer EH1 4.0% 3.8% 4.7% 4.8% 4.0%

In the next subsections, two sets of graphical results are presented
per each algorithm. The first set shows how the fault injections, affect-
ing the flip-flops in the core units, generate different error types as the
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Fig. 9. DOT soft errors per CPU unit and relevant subUnit over the full execution time for all four ISAs.
injections occur in a specific cycle and flip-flop. The relevant subUnits
of the CPU are also included. The second set present the conditional
probability of an error source being an injection in an specific unit, once
the error has been observed. In all cases, different units and subUnits
are susceptible to be affected in specific ways by the fault injections.

5.1. DOT results

This section contains the particular results for the DOT algorithm,
compiled with the four available ISAs. Fig. 9 shows the types of errors
that each fault injection produced in the core, for the 4 campaigns
that were carried out; featuring RV32I, RV32IC, RV32IM and RV32IMC
ISAs. X axis represents the clock cycle when the bitflip was injected,
whereas the Y axis represents the target FF. In the latter case, FFs are
categorized by unit/subUnit containing each one of the FFs in the VeeR
EH1 microarchitecture. As mentioned above, the clock cycle and the
FF to inject to were randomly selected each time. This description also
holds for Figs. 11 and 13 (which will be shown in Sections 5.2 and 5.3,
respectively).

Then, Fig. 10 presents, for the four ISAs, the conditional probability
of an error being injected in a particular unit, once an error type has
been observed. This description also holds for Figs. 12 and 14 (which
will be shown in Sections 5.2 and 5.3, respectively).

Looking at both figures, one can roughly observe that, for this
algorithm, the DEC unit is the most affected one by SDCs and the IFU,
by SEDs. The rest of the units experience all types of errors, although
with less density.

5.2. CCSDS results

This section contains the particular results for the CCSDS algo-
rithm, compiled with the four available ISAs. Similarly to the previous
algorithm, this is shown in Fig. 11 and in Fig. 12.

This time, most common errors are SDCs and DUEs, with very little
presence of SEDs. SDCs are more present in the DEC and the EXU-alu,
whereas DUEs are scattered around the rest of the units.
9

5.3. SHA results

This section contains the particular results for the SHA algorithm,
compiled with the two available ISAs: RV32I and RV32IC, as the
compiler never make use of the M extension for this specific algorithm.
Results are presented in Figs. 13 and 14.

Similarly as Fig. 11, the DEC and EXU-alu units are most affected
by SDCs. Here, it is also interesting to note that the SHA accumulates
most of the SDCs in the second half of its execution (Fig. 13), which is
when the algorithm actually makes the hashing operations.

6. Discussion

This section presents an in-depth interpretation of the results pre-
sented in Section 5. To this end, a profiling was made, using the RISC-V
ISA simulator Spike [56], in order to characterize the workload of the
codes of all three algorithms, classifying the instructions that were ex-
ecuted according to their types: ‘‘Load/Store’’, ‘‘Branches’’, ‘‘ALU’’ and
‘‘Others’’, all in both their ‘‘Standard’’ and ‘‘Compressed’’ (C-extension)
form and, finally, the ‘‘Multiplication’’ (M-extension). This classification
is presented in Table 7.

6.1. Workload dependence

The first observation that can be made from Fig. 7 is that the type
of observed errors depends on the workload of the program. Thus,
firstly, SEDs are considerably more common in the DOT algorithm
than in the other two. These kind of errors consist in the result being
correctly calculated later than expected, which might be caused by
an error affecting the branch prediction system of the processor or
alteration of the I-cache control (IFU-aln). This is consistent with the
data displayed in Fig. 8, which shows that the IFU (containing the
core’s branch predictors and instruction alignment logic) is the unit
that concentrates the majority of SEDs, especially for the DOT, being

the simplest algorithm, followed by the CCSDS. SEDs also occur in the
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Fig. 10. DOT - Conditional probability of originating bitflip unit given an error category (4 ISAs).
Fig. 11. CCSDS soft errors per CPU unit and relevant subUnit over the full execution time for all four ISAs.
DEC, EXU and LSU units (again, most probably for the DOT), but much
less frequently than in the IFU.

Secondly, there exists a significant difference in SEDs between the
DOT and CCSDS, which cannot simply be explained by their instruc-
tion profiling, since it was similar in both algorithms (∼15%–18%
10
Load/Store, ∼15% Branches and ∼55% ALU for RV32I), these per-
centages being similar between both algorithms, and across all ISAs.
Although this profiling would explain why DUE and SDC errors are very
similar for the DOT and the CCSDS, but not the difference observed in
SEDs in a direct manner. However, the program flow in CCSDS is less
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Fig. 12. CCSDS - Conditional probability of originating bitflip unit given an error category (4 ISAs).

Fig. 13. SHA soft errors per CPU unit and relevant subUnit over the full execution time for RV32I and RV32IC.

Fig. 14. SHA - Conditional probability of originating bitflip unit given an error category (2 ISAs).
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Table 7
Instruction profiling per algorithm, ISA and instruction type. (number of instructions & percentage of the total executed instructions).

Algorithm ISA Load/Store Load/Store Branches Branches ALU ALU Others Others Multiplication Total
standard compressed standard compressed standard compressed standard compressed

DOT RV32I 228 (14.99%) 0 (0.00%) 428 (28.14%) 0 (0.00%) 862 (56.67%) 0 (0.00%) 3 (0.20%) 0 (0.00%) 0 (0.00%) 1521
RV32IC 187 (12.29%) 41 (2.70%) 410 (26.96%) 18 (1.18%) 694 (45.63%) 168 (11.05%) 2 (0.13%) 1 (0.07%) 0 (0.00%) 1521
RV32IM 210 (59.15%) 0 (0.00%) 20 (5.63%) 0 (0.00%) 106 (29.86%) 0 (0.00%) 3 (0.85%) 0 (0.00%) 16 (4.51%) 355
RV32IMC 171 (48.17%) 39 (10.99%) 18 (5.07%) 2 (0.56%) 2 (0.56%) 104 (29.30%) 2 (0.56%) 1 (0.28%) 16 (4.51%) 355

CCSDS RV32I 158 (18.31%) 0 (0.00%) 234 (27.11%) 0 (0.00%) 465 (53.88%) 0 (0.00%) 6 (0.70%) 0 (0.00%) 0 (0.00%) 863
RV32IC 103 (11.94%) 55 (6.37%) 212 (24.57%) 22 (2.55%) 367 (42.53%) 98 (11.36%) 2 (0.23%) 4 (0.46%) 0 (0.00%) 863
RV32IM 134 (59.29%) 0 (0.00%) 12 (5.31%) 0 (0.00%) 56 (24.78%) 0 (0.00%) 6 (2.65%) 0 (0.00%) 18 (7.96%) 226
RV32IMC 85 (37.61%) 49 (21.68%) 8 (3.54%) 4 (1.77%) 12 (5.31%) 44 (19.47%) 2 (0.88%) 4 (1.77%) 18 (7.96%) 226

SHA RV32I 5168 (44.14%) 0 (0.00%) 224 (1.91%) 0 (0.00%) 6306 (53.86%) 0 (0.00%) 10 (0.09%) 0 (0.00%) 0 (0.00%) 11,708
RV32IC 4831 (41.24%) 340 (2.90%) 212 (1.81%) 13 (0.11%) 1732 (14.79%) 4576 (39.06%) 2 (0.02%) 8 (0.07%) 0 (0.00%) 11,714
prone to achieve performance gains of I-cache (temporal and spatial
locality) than a more regular and loop-based DOT algorithm and the
entropy of the SHA algorithm is greater, so branch prediction is not
as straight-forward as it is with DOT, so alterations on the branch
prediction subUnit would probably have less impact.

Next, DUE errors are more common in the SHA than in the other
two algorithms. The profiling in Table 7 indicates that this algorithm
is considerably the most memory-bound one (∼44% Load/Store vs.
∼15%–18% for the other two). This is consistent with data shown in
Fig. 8, which indicates that DUEs significantly increase in the LSU for
the SHA, both in the RV32I and RV32IC targets. This phenomenon
might be caused by incorrect memory accesses, or significant I-cache
misses caused in this unit that delays the execution of the program
leading to DUE timeouts. Slight increments in DUEs and SDCs are also
observed in the DEC, EXU and IFU units, when comparing the SHA
with the other two algorithms. Again this could be due to the longer
execution time, higher resource usage and a much more complex call
graph for this algorithm compared to the other two.

Finally, SDCs are again more common in the SHA than in the other
two applications. The ALU instructions (6306, see Table 7) are more
abundant in this algorithm when compared to the other two (862 and
465), and so are the number of registers used in the register file, the
subUnit responsible for most of these errors, which would explain this
behavior.

6.2. Unit and subunit dependence

Fig. 8 indicates that the DEC unit is, by far, the one that is most
affected by all types of errors (especially SDCs), for all the targets and
algorithms. This unit contains the register file of the core, whose bitflips
significantly affect the normal operation in a 3-address architecture
core, where all operations must be performed with data in registers.
Looking by subUnits (Figs. 9, 11 and 13), the decode, arf and instbuff
(described in Table 2) are the most affected ones by SDCs.

SDCs are very significant in the EXU unit too, which are due to
malfunctions in the ALUs of the core. DUEs are also significant in
this unit since these ALUs are also used for calculating branch target
addresses. In these cases, a wrong target address in a branch would
make the program execute a wrong piece of code, thus leading to a
system halt.

In Figs. 9 and 11, it is also interesting to note that the mul_div
subUnit is less populated with errors (of all types) for targets RV32I and
RV32IC than when using the M extension (RV32IM and RV32IMC). This
makes sense since this subUnit is used by multiplication instructions
that can only exist in the code when the M ISA extension is present.
However, a few SED and DUE errors can still be observed in this
subUnit for RV32I and RV32IC (again, both in Figs. 9 and 11), which
shows that errors affecting a module of the processor (in this case, the
multiplication unit) that is theoretically not used by a program can also
affect the correct execution of that program.

Most of the errors affecting the LSU unit were DUEs, with a few
SDCs and some SEDs, the latter mainly for the DOT. These SDCs and
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DUEs might be caused by exceptions raised by wrong memory accesses,
or fetching instructions from wrong memory positions. Fig. 8 reveals
that the lsu_lsc_ctl subUnit concentrates most of the SDCs of this unit,
whereas stbuf and bus_intf are more affected by DUEs.

Finally, analyzing the units being affected by the different types of
errors (Figs. 10, 12 and 14), it seems clear that the majority of SDCs
occurred in the DEC unit, whereas the DUE errors affected mostly the
LSU and DEC units, followed by the IFU. Concerning the SED errors,
they mostly affect the IFU unit (Fig. 10), but only for applications that
can benefit from branch prediction (as seen in Section 6.1 for the DOT
algorithm, Fig. 9). Otherwise, there is a residual amount of SEDs mostly
affecting the DEC unit (Figs. 12 and 14).

6.3. ISA dependence

Looking at Fig. 7, it can be observed that the error rates of ISAs
including the M extension are higher than those that do not use this
extension. This holds when comparing RV32I vs. RV32IM and RV32IC
vs. RV32IMC, for the DOT and CCDS. On the one hand, using target M
makes the application being more memory bound than not using it (see
Table 7), which explains the increase observed of DUEs in all cases.
On the other hand, more HW resources (for decoding and executing
multiplications) are used when this target is activated, therefore mak-
ing the core more prone to SDC errors. This phenomenon can also be
observed in Figs. 9, 11 and 13, where some subUnits (especially DEC-
instbuff, IFU-aln and EXU-muldiv) have greater concentration of errors
when using the M extension.

The effects of using the M extension are also visible in the pie
charts of Figs. 10 and 12. Thus, for the DOT, the relative abundance
of SEDs increases when using the M extension (RV32I vs. RV32IM
and RV32IC vs. RV32IMC), and so does the conditioned probability
that these SEDs have occurred in the IFU. For the CCSDS (Fig. 12),
the relative abundance of DUEs increases instead. Both results have in
common a decrease of the relative abundance of SDCs, which are the
most critical errors. This is consistent with the fact that including M
makes the programs being more memory-bound, in a similar way as
DUEs were more common in the SHA than in the other two algorithms
(this was discussed at the end of Section 6.1).

Finally, the usage of the C extension in absence of the M extension
seems to slightly decrease the error rates as a whole (Fig. 8). However,
the effect is the opposite if the M extension is included in the target
(i.e., RV32IMC vs. RV32IM). The profiling of Table 7 reveals that, for
the RV32IC target, the percentage of ‘‘ALU Compressed’’ instructions
(20.5% on average) is much higher than the ‘‘Load/Store compressed’’
ones (4% on average). However, for RV32IMC, these percentages are
24.4% and 16.3%, respectively. Therefore, it looks like that an intensive
use of ‘‘ALU Compressed’’ instructions increase the reliability of the
core against soft errors, whereas the ‘‘Load/Store Compressed’’ ones
have the opposite effect. This could be related to the extra resource
usage of the RISC-V compressed load and store instructions, where the
stack pointer plays an important role in calculating the effective mem-
ory address and some operations are needed in the process, while the
ALU instructions do not use any extra registers nor require additional

calculations. Also, the relative abundance of SDCs seems to increase
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when the C extension is used, but only when the M extension is also in
the target ISA (therefore, the application is more memory-bound, see
RV32IM vs. RV32IMC in Figs. 10 and 12). The same phenomenon is
observed in Fig. 14 for the SHA application.

7. Conclusions and future work

This article has presented an analysis of experimental results study
of the soft-error sensitivity of the COTS RISC-V VeeR EH1 processor
by using fault injection. Different combinations of ISA RISC-V exten-
sions (RV32I, RV32IC, RV32IM and RV32IMC) were evaluated when
executing three space-relevant applications: a dot product function, a
CCSDS-123.0-B-2 hyperspectral compression algorithm and a SHA-256
hash function, each of them having different workloads and features. A
profiling on each one of these applications was firstly made using the
RISC-V Spike simulator and then, faults were injected during the exe-
cution of these benchmarks, randomly both during their execution and
on any microarchitectural FF existing in the core. The fault injection
system that was developed is non intrusive and autonomous.

Fault-injection campaigns were performed with statistically signif-
icant amounts of bitflips that allowed gathering experimental results
with a confidence level of 95% and an error margin of 1%. The
following conclusions can be drawn:

• The types and severity of errors observed in the core had a
strong dependence with the unit where they occurred. Thus, once
SDC/DUE errors were observed, the highest probable originating
unit is, by far, the DEC unit. Therefore, if only one unit can be
hardened against radiation, it should be this one.

• There exists a strong correlation between the different types of
errors and the units/subUnits mostly affected by them. Thus,
SDCs mostly affect the DEC unit, DUEs mostly affect LSU, DEC and
IFU, and SEDs (mainly present in loop-based programs) mostly
affect the IFU.

• There exists a strong correlation between the target ISA exten-
sions and errors affecting certain elements of the core. Thus, more
errors were observed in the multiplier when the M extension was
present in the target ISA.

• Including the M extension increases the error rates of all types,
and especially for those that are less critical (SEDs, for the DOT
application and DUEs, for the CCSDS). However, execution times
are significantly lower. A speed/reliability assessment may be
needed when deciding target ISA for specific applications.

• Memory-bound programs (such as the SHA) have highest SDC and
DUE error rates. This effect is also observed when using the M
extension in the other algorithms.

• Loop-based programs (such as the DOT) have higher SED error
rates. However, the specific error rate depends on the specific
application that is targeted.

• The usage of the C extension leads to interesting results: if compi-
lation leads to more ‘‘Load/Store Compressed’’ instructions, then
all error rates increase. Thus, this was observed for the RV32IMC
ISA. However, for RV32IC, error rates decrease instead, the reason
being that more ‘‘ALU Compressed’’ instructions are generated
after compilation in the absence of the M-extension for the target
ISA.

Future work will involve fault injection on the complete CCSDS
23.0-B-2 hyperspectral compression algorithm [51,57] (as only a small
outine was considered in this work) and studying the F (Floating
oint) ISA extension [58–60]. Studying the (Zbk, Zvk*) cryptography
xtensions [61], such as the ones proposed by Fritzmann [62] and Nan-
ipieri [63] in an scenario of post-quantum cryptography (PQC) [64–
7] and complementing these results with radiation-ground tests under
13

rotons or neutrons are also interesting lines for future research.
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