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Featured Application: A deep learning application to improve speech clarity in digital audio
affected by environmental noises, showing potential for enhancing real-time streaming communi-
cation in noisy settings.

Abstract: This paper presents an approach to enhancing the clarity and intelligibility of speech
in digital communications compromised by various background noises. Utilizing deep learning
techniques, specifically a Variational Autoencoder (VAE) with 2D convolutional filters, we aim to
suppress background noise in audio signals. Our method focuses on four simulated environmental
noise scenarios: storms, wind, traffic, and aircraft. The training dataset has been obtained from
public sources (TED-LIUM 3 dataset, which includes audio recordings from the popular TED-TALK
series) combined with these background noises. The audio signals were transformed into 2D power
spectrograms, upon which our VAE model was trained to filter out the noise and reconstruct clean
audio. Our results demonstrate that the model outperforms existing state-of-the-art solutions in noise
suppression. Although differences in noise types were observed, it was challenging to definitively
conclude which background noise most adversely affects speech quality. The results have been
assessed with objective (mathematical metrics) and subjective (listening to a set of audios by humans)
methods. Notably, wind noise showed the smallest deviation between the noisy and cleaned audio,
perceived subjectively as the most improved scenario. Future work should involve refining the
phase calculation of the cleaned audio and creating a more balanced dataset to minimize differences
in audio quality across scenarios. Additionally, practical applications of the model in real-time
streaming audio are envisaged. This research contributes significantly to the field of audio signal
processing by offering a deep learning solution tailored to various noise conditions, enhancing digital
communication quality.

Keywords: speech enhancement; noise suppression; deep learning; variational autoencoders

1. Introduction

Although the quality used to store audio allows them to be very faithful to the originals,
some information may be lost during transmission. In particular, we call noise a signal
or set of signals that distort the wave that transmits the original sound. Within this
concept, there can be artificial noises (those generated by the means of communication,
such as interferences) or natural noises (those generated by the environment where the
communication takes place). When the transmission is in noisy scenarios, ambient sounds
may affect the intelligibility of the received message. This issue underscores the importance
of addressing noise problems in audio, as highlighted in [1,2], demonstrating the significant
impact of noise on the fidelity of audio transmissions and the need for solutions to enhance
the overall quality of communication.
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The motivation for this research arises from the critical need to enhance the clarity
and intelligibility of speech in various communication settings, where background noise
often compromises the quality of the transmitted audio. While existing noise reduction
techniques have made strides in mitigating this issue, our work aims to develop a deep
learning model specifically tailored to suppress background noise across a range of simu-
lated scenarios. However, our objectives extend beyond mere noise elimination. We also
seek to quantitatively assess the relative difficulty of filtering out different types of back-
ground noises present in the same audio fragment. By doing so, we aim to identify which
types of noise have a more detrimental impact on speech quality, thereby creating a guide
for future research and technological development in the field of audio signal processing.

The real problem comes when the noise is equal to or stronger than the signal and
causes its complete distortion. This fact opens the possibility of using techniques that can
eliminate background noise for safer and more reliable transmissions, which is desirable in
cases such as phone communications, especially in emergencies.

Artificial intelligence has demonstrated its ability to remove noisy information from
various formats, such as images or signals [3,4]. Deep learning models have obtained
the best results in recent years among all the artificial intelligence techniques. Deep
learning was defined by [5] as models composed of multiple processing layers that learn
representations of data with various levels of abstraction. These models have shown an
exemplary performance in speech enhancement [6].

Audio signals can be analyzed either in the time domain or the frequency domain,
with the latter often represented visually as images. Our approach capitalizes on the image-
processing capabilities of convolutional layers in deep learning neural networks, specifically
for tasks like cleaning and restoration. We have trained a deep learning model that can
remove four types of background noise with pairs of original audio and audio mixed with
background noise. Original audio signals have been transformed into a 2D representation
by converting them into a power spectrogram. Following this transformation, we employ
a two-dimensional Variational Autoencoder (VAE) to remove noise from the signal and
reconstruct the clean audio. As no dataset solves the presented use cases, we have created
our own. To carry out the model development and training, we have used a dataset with
recordings of TED talks (TED-LIUM 3 dataset) as the expected output and the same dataset
mixed with four different background noises (aircrafts, rain and thunderstorms, wind, and
traffic) obtained from different specialized websites as the input to the network.

The results show that our model performs better than other solutions in the state of
the art. Regarding the proposed scenarios, although there are differences between them,
we cannot assure that one of the background noises influences more than others. The
only thing confirmed by the results is that the audios with wind are perceived with better
improvement, but this perception is a bit tricky as the differences between the clean audios
and the audios with this background noise are smaller.

The paper is structured as follows. Section 2 compiles some works framed in speech
enhancements, audio denoising, etc. Section 3 formally describes the dataset used to train
the model and the deep learning models used in the research. Section 4 compiles the
different results that have been obtained and their interpretation. Finally, Section 5 gives
some conclusions and future works.

2. State of the Art

Building on the foundational need to improve speech communication in noisy envi-
ronments, as outlined in our introduction, a variety of models have been developed to
address challenges in speech enhancement and background noise reduction. This section
aims to review these related works, highlighting their contributions and limitations, to
contextualize our own approach, which extends beyond mere noise removal to a nuanced
understanding of how different types of noise uniquely impact speech quality.

Some of these works apply techniques not encompassed in the deep learning field.
Ref. [7] reduces the presence of background music over conversational audios. It uses
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trigonometric transformation and wavelet denoising techniques. In [8], the audio denoising
is made with speech audios and noises like buzzing equipment or background noise from
the street. Spectrograms form the training dataset and use a block thresholding estima-
tion procedure. The same authors present, in [9], a similar approach to suppressing the
harmonic noise of music by using its spectrograms. The method applies block attenuation
techniques. Finally, ref. [10] implements a process to denoise speech audios containing
slight background noises (which do not work with loud ones). It works with raw audio
and applies Wiener filters, a well-known method of the previous age of audio denoising.

The present work focuses on speech enhancement but uses deep learning techniques.
The following studies make use of these methods in similar use cases. In [11], an autoen-
coder with a bottleneck that uses Recurrent Neural Networks (RNNs) addresses speech
enhancement in recordings made with mobile phones. In [12], a U-Net model is applied
directly to the audio waveform to restore audios in cases of background noise and loss of
signal. The results are evaluated with a loss metric and by people listening to the audios.
The use of Generative Adversarial Networks (GANs) for speech enhancement can be found
in [13]. In this case, they used raw audios of 10 use cases (eight of them are genuine cases
and two of them artificially created). Another interesting work is [14], which separates the
different waves of raw audios with the voices of women and men mixed with songs. In
this case, deep autoencoders are used to achieve the issue. To achieve a similar objective,
ref. [15] addresses the field of deep learning-based speech enhancement techniques, focus-
ing on their real-time applications. Evaluating three popular models in terms of signal
processing metrics, such as a signal-to-interference ratio, response time, and memory usage,
the research offers valuable insights into the online viability of these methods.

Another distinguishing feature is the use of power log spectrograms to train the deep
learning model, as in [16], that evaluate twelve deep learning models for single-channel
ego-noise reduction on drones, exploring various domains and architectures. The findings
highlight the superiority of U-Net models in the time–frequency complex domain, achieving
substantial improvements in speech enhancement measures across low Signal-to-Noise
ratio scenarios. In [17], a based convolutional system is developed to enhance spectral
information by simultaneously utilizing multiple bandwidth spectrograms, specifically
augmenting wider bandwidth (16 ms and 8 ms) spectrograms as auxiliary information.
Experimental results on the VB dataset demonstrate that incorporating different bandwidth
spectrograms provides supplementary information, resulting in an over 0.1 improvement,
with the embedding dimension influencing the fusion strategy in the encoder. In [18], a
Long Short-Term memory neural network (LSTM) is trained with frequency spectrograms
to improve the speech quality in audios with background noises, reverberations, and a
poor communication environment. Another work that uses power spectrograms is [19],
which represents cases of passing cars and café babble noise. It uses a convolutional neural
network in the approach. Similarly, in [20], the authors use voice sound with background
noise characteristics of conversations represented as spectrograms. Then, a deep neural
network of four layers is used to eliminate the noise in the spectrograms. Finally, ref. [21]
presents a method for enhancing laser-detected speech signals by optimizing spectrograms
to mitigate a low signal-to-noise ratio and non-stationary noise challenges. The approach
incorporates GAN with spatial attention and integrates short-time objective intelligibility
(STOI) into the loss function, successfully improving speech quality under severe noise
interference conditions.

This research stands out in the field due to several key innovations. Primarily, it
targets evaluating the impact of four distinct real-world background noises on speech
audios. To achieve this, we have developed a unique deep learning model designed to
effectively eliminate these noises from a series of speech recordings. Our choice of a
variational autoencoder for this purpose distinguishes our approach. Moreover, our study
is the first of its kind to incorporate a subjective evaluation method. This involves a panel
assessing the clarity of speech audios post noise removal. While other studies rely solely
on mathematical metrics, our approach adds a crucial human dimension to the assessment.
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This step is often overlooked in other research due to the technical challenges and potential
information loss when converting spectrograms back into raw audio, possibly leading to
subpar results that others might choose not to report. Our willingness to undertake this
complex transformation and evaluation process further underlines the novelty and depth
of our work.

3. Materials and Methods

In this paper, we have trained a deep learning model, specifically a Variational Au-
toencoder, with pairs of power logs spectrograms of voice audios mixed with four different
background noises: aircrafts, rain and thunderstorms, wind, and traffic jams. The research
followed a four-step process that is described in the following. First, the creation of the
dataset by mixing speech audios with background noise. Second, the transformation of
the audios into a visual representation, a spectrogram, that is more efficient to manage
as the model. Third, the training of the model with the dataset. Finally, the objective
and subjective evaluations. The workflow followed from working with the raw data to
obtaining the trained model is represented in Figure 1.
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3.1. Datasets of Speech Audios and Background Noises
3.1.1. Audio Features Decision

The first step consists of selecting the audio file format and the signal processing
characteristics: sampling rate, bit-depth, and the number of channels. As a file format, we
use WAV or WAVE (apocope of Waveform), launched in 1991 by Microsoft based on the
RIFF (Resource Interchange File Format) specification. It has the advantage of being in an
uncompressed format, in which the user hears what is stored. It also supports different
quality characteristics such as sampling frequency and bit depth [22], which are the most
important features of audio management [23]. We have decided to use 22.5 kHz, a bit-depth
of 16 bits, and only one audio channel corresponding to monaural sound reproduction.
These characteristics are sufficient for the problem we want to solve.

During the second step, we need to create the pairs of audios. As no dataset solves
the presented use cases, we have created our own. For that, we need speech audios and
background noises that represent the four use cases.

For the former, we are using the TED-LIUM 3 dataset, which includes audio recordings
of the well-known TED-TALK series. The dataset contains 2351 audio files in a NIST Sphere
format (SPH), which is very common in audio speech files as it includes the audio alongside
a transcription of the speech. It uses a sampling rate of 16 kHz and a bit-depth of 16 bits.
The total length of the dataset reaches more than 452 h. In the audios, we can find a
diverse range of people with different types of tones and quality recordings under other
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circumstances, which augments the problem’s difficulty. The dataset is freely available to
download from Open Speech and Language resources.

For the latter, we have obtained the different background noises from two websites.
They used a WAV format, a sampling rate of 16 kHz, and a bit-depth of 16. The number of
audios per use case differs, as the availability was not the same. This problem will be, lately,
solved during the preprocessing stage. Also, the length of the audio varies depending on
the use case. Table 1 summarizes this information for the four use cases.

Table 1. Background noise use cases dataset.

Use Case Number of Audios Length per Audio

Aircrafts 80 Around 5 s
Storm lights and rain 18 Around 5 min
Wind 522 From 3 s to 5 min
Traffic jams 512 Around 3 s

3.1.2. Audio Preprocessing

The first problem arose with the TED LIUM dataset as it has an SPH format. We
transformed it into WAV format using a Python script using the SoX tool [24] to convert
the audio.

Next, we will describe all the modifications done to obtain the final dataset of the
pairs of audios. First, we eliminated the first and last 15 s of the speech audios to avoid
moments without speech and irrelevant sounds like applause or music. Then, we generated
60,000 chunks with a length of 3 s with a balance of 25% in-stances for each use case. At this
stage, we also set the value of the sampling rate, bit-depth, and the number of channels,
which were set at 22.5 kHz, 16 bits, and an audio-mono channel, respectively. In the case
of finding audio with different value ranges, the corresponding transformation applied
min–max normalization. This method allows all audio values to be in the same range
between 0.0 and 1.0, as shown in Equation (1).

z =
x − minval

maxval − minval
(1)

Given the complexity of the problem, the neural model requires many audios for
proper training. In our case, the availability of audios was scarce, so it was necessary to
apply data augmentation techniques and create synthetic data. Once we had the audios
chunked in pieces of 3 s with standardized features, we mixed the speech audios with the
different background noises randomly, but ensured the number of audios for the four use
cases. In the cases where the background noise did not have a length of 3 s, different audio
of the same case was chosen until the speech audio length was reached.

3.1.3. Visual Representation of Audios

Audio signals can be processed as a time-domain or a frequency-domain representa-
tion. The former uses the signal as raw audio. The latter uses images of visual representa-
tions of the audio. Due to the high complexity of the problem, where the original speech
audios and its version with background noise do not match any of the values (increasing
the difficulty of a reconstruction problem), we have decided to use the second option as
images perform well in auto-encoders. We used autoencoders with convolutional filters of
2 dimensions which have demonstrated better performances in these models than those of
1 dimension [25].

Many audio representations in the frequency domain are log power spectrograms
(LPS), Mel spectrograms, or Mel-frequency cepstral coefficients spectrograms (MFCCS).
In this case, we used LPS because it includes an audio feature called power representing
wave decibels at a particular moment. LPS consists of an image representing the audio
information. In this case, it captures more information than other standard spectrums [26].
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Spectrograms are created using a Python script and a library called librosa, [27], which
specializes in music and audio management. The script implements a Short-Term Fourier
Transformation (STFT) that converts the audio from the time domain to the frequency
domain. Each spectrogram was created using a sliding window of 23 widths and 11.6 steps
in milliseconds. The output spectrograms had a size of 256 × 256 × 1 for each instance.
Finally, the dataset contained 60,000 spectrograms, with 15,000 belonging to each use case.

3.2. Using a Variational Autoencoder for Noise Suppression

As noted in the state-of-the-art section, autoencoders perform well to do speech
enhancement, audio denoising, etc. We have selected a variational autoencoder as the DL
model to perform this task because of its ability to represent the input data more accurately
using a latent space. With this representation, the output images have higher definition and,
therefore, the quality when transforming them backwards into raw audio will be better. In
the following, we formalize some deep learning concepts to better understand this type
of architecture.

3.2.1. Convolutional Operator

This operator makes it possible to find image features like edges, which is why their
main application is image classification [28]. In particular, it led to the creation of the
2-dimensional Convolutional Neural Networks (2D CNNs), used in Deep Learning since
1999 [29]. Convolutional operators allow finding a feature in one part of an image that
can later be found in another. As we work with images of power log spectrograms, the
convolutional operators of the Variational Autoencoder will find feature representations
from one spectrogram to another.

3.2.2. Autoencoders

These two-part models first use a multilayer encoder network to represent high-
dimensional structures in a low-dimensional space. Then, there is a decoder network to
convert the data from this space into high-dimensional structures with some relation to the
first one [30]. This architecture works as follows. The input data go through the different
convolutional layers of the encoder, obtaining a small piece of data with the main features.
These data are distributed in the bottleneck, creating a representation called latent space.
Finally, the feature representation goes through the decoder to obtain an output like the
input data.

3.2.3. Variational Autoencoders

This Autoencoder solves the problem that classical ones have with latent space. Instead
of placing a single point in the latent space, this case provides a distribution. This latent
space can also be better organized by adding a regularization to the loss function, [31]. In
our case, it creates a distribution using the input data’s mean and variance. The following
equation represents the distribution of this space.

f (x1, . . . , xk) =
e−

1
2 (

→
x−→

µ )
T

∑−1 (
→
x−→

µ )√
(2π)k|∑|

(2)

where
→
µ represents the mean vector of the different distributions in the latent space and

|∑| is the covariance matrix of the distributions. The last two parameters are calculated
using Equations (3) and (4) applied to a space of 2 dimensions.

→
µ =

(
µx
µy

)
(3)

(
σx

2 ρσxσy
ρσxσy σy

2

)
(4)
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To sample a point into the latent space, we have used the formula of sampling points,
depicted in Equation (5). In this case, we have modified it to get negative values, so we
have a more expansive dimensional space to represent the information where ε is a sampled
point from a standard normal distribution.

z =
→
µ +

elog (σ2)

2
ε (5)

3.3. Training Phase

To train the model, we have split the dataset into a percentage of 80 for training/validation
and 20 for the test. The final dataset has an amount of 60,000 LPS that represent audios of 3 s
without overlapping. The model was trained with pairs of audios with mixed background
noise and the original version of these audios.

The hyperparameters during training were found using a grid search strategy. This
method guides the training in finding the best hyperparameter setting for the model by
using different combinations of the values [32]. The different hyperparameters and values
used in the grid search have been compiled in Table 2.

Table 2. Hyperparameters and values used in the grid search.

Hyperparameter Values

Latent space 128, 200, 400, 800, 1024, and 2048 neurons
Dense layer 100, 200, 256, 1024, 2048, and 4096 neurons
Convolutional blocks 3, 4, 5, and 6
Skip connections 3, 4, and 5
Learning rate 0.01, 0.001, and 0.0001

Optimizer and loss function hyperparameters have not been changed during the
process. The optimizer is an adaptive learning rate optimization algorithm. In particular,
we have used Adam as it was explicitly designed for training deep neural networks, [33].
All the efforts to create a variational bottleneck do not make sense unless the network
knows how to learn about the input data representations in the latent space. Therefore,
the loss function needs a change to distribute the information in the latent space precisely
and accurately. The loss function uses the Root Mean Squared Error (RMSE) and the
Kullback–Leibler divergence DKL(P||Q) (KL). This last metric will allow the network to
check if the distributions are placed correctly in the latent space. RMSE and KL have been
formalized in Equations (6) and (7).

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (6)

DKL(N(µi, σi)||N(0, 1)) =
1
2 ∑

i

(
1 + ln

(
σ2

i

)
− µ2

i − σ2
i

)
(7)

where N(µ,σ) is a normal distribution having µ as the mean, σ as the standard deviation of
the output data obtained in training, and N(0,1) is the standard normal distribution.

Finally, Equation (8) shows the modified loss function we have used.

loss = RMSE+λ·DKL(N(µi, σi)||N(0, 1)) (8)

In this case, λ is a hyperparameter that weights the KL metric. After fine-tuning, the
selected value for this hyperparameter was 100,000, indicating that the RMSE between
the input and output signals was not a primary concern in our optimization process.
This decision was based on the understanding that RMSE is a relatively poor metric for
evaluating the noise level in an audio signal, especially when the audio is represented as an
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image in the form of a power spectrogram. In such a representation, even a minor deviation
in a single pixel can significantly impact the RMSE, but this does not necessarily translate
to a perceptible error when the image is converted back to an audio signal. Therefore, our
model’s loss function is designed to prioritize other aspects over RMSE for a more accurate
and meaningful evaluation of audio quality.

The model comprises 306,762,465 hyperparameters, and we used an AMD Threadrip-
per 2950X with 128 Gigabytes of DDR4 RAM and a GeForce RTX 2080 TI GPU. The training
lasted more than 22 h. The final metric at the end of the training phase was 0.0153.

3.4. Proposed Method

The proposed solution is a two-dimensional VAE that is trained with pairs of spec-
trograms of speech audios with real background noise and the original speech audios.
After some convolutional operation, the encoder reduces the size to a minimal piece of
information that represents its main features. These pieces of information are then placed
in a latent space, which is a distribution of the encoded data obtained at the convolutional
stage. The mean and variance of each input are used to fit the distribution in the latent
space, this feature being the main difference from a standard encoder. For a VAE, each
input represents a distribution in latent space rather than a single point. Information is
recovered and upsampled from the latent space until the output has the expected dimen-
sions. Finally, this output is compared to the spectral representation of the original audio
without background. This comparison evaluates how well the background noise has been
suppressed and lets the model adjust its hyperparameters and learn the information. After
training with the whole dataset that comprises audios from the four use cases, the model
can remove the real background noise.

The input layer of the model has a size of 256 × 256 × 1, representing the audio of one
channel, which is connected to the following layer. The input layer aims to feed the audio
to the convolutional blocks. These blocks are responsible for reducing the dimensionality of
the information. The convolutional stage consists of 6 convolutional blocks, where each of
them obtains a feature map of the previous data. Each block has two convolutional layers
with two 2-dimensional filters of size 3 × 3, stride one, and max-pooling of 2 × 2 (except in
the last block). Convolutional layers in the same block have the same number of neurons
using the Rectified Liner Unit (ReLU) as an activation function. The number of neurons
from one block to another is the following: 32, 64, 128, 256, 512, and 1024. At the end of
this convolutional stage, the input data are reduced to 8 × 8 × 1024. This small piece of
information represents the input data with all the main features. Finally, a flattened layer is
applied to process information as a one-dimensional vector of size, 65,536.

At this point, the information goes through the bottleneck, which in the case of VAEs
builds a latent space of its representation. The bottleneck entrance has a dense layer of
2048 neurons that introduces the information from the last convolutional block. Then, we
have two other dense layers that manage the distribution’s mean and variance, having
2048 neurons. A lambda layer is applied to choose the point representing the input data
in the latent space. After getting this point, we can position it in a multivariate space and
recreate the last convolution dimensions before the bottleneck, allowing the decoder to do
the inverse process. To start this process, we use a dense layer that converts the point into
information that can be processed in the de-convolutional stage.

The stage of dimensionality upsampling, or deconvolution, now begins. This stage
starts with a reshaped layer so the information can be introduced in the two dimensions’
deconvolutional blocks. This process has five deconvolution blocks. Each block comprises
two convolution layers, with an upsampling layer in the first position. Again, the number
of neurons within the layers of the same block is the same, and all use the ReLU activation
function. The number of neurons per layer of each block is 512, 256, 128, 64, and 32.
These blocks increase the dimensionality of the feature map. In this deconvolution process,
starting from the tiny feature map in the bottleneck stage, new audio spectrograms are
created using only the essence of the original audio. In each convolution block, concatenate
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layers have been used with the even blocks of the encoder to speed up the training and not
lose the substantial relationship between the data. Lastly, a final convolution layer with
one neuron is used to achieve the same final audio size as the input. The last layer uses the
hyperbolic tangent (tanh) activation. A representation of the model is in Figure 2.
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Finally, the output data are compared to the spectral representation of the original
audio without background noise. This comparison evaluates how well the background
noise has been suppressed and lets the model adjust its hyperparameters and learn the
information. After feeding the whole dataset that comprises audios from the four use cases,
the model is trained so it can remove real background noise.

4. Results and Evaluation

This section compiles the results obtained by evaluating the model for the four different
use cases with objective and subjective tests. The first ones compare our model with others
in the state-of-the-art using mathematical metrics. The second type of tests is based on the
subjective perception of a group of people who will evaluate how good the model is at
eliminating noise.

4.1. Objective Evaluations
4.1.1. Evaluation of Noise Reduction Performance

We will assess the performance of our approach in eliminating background noise by
comparing it with two baseline methods. This evaluation involves comparing the noisy
audio input to the model with the model’s output, which is a denoised signal. The two
baseline models are a classical method using Wiener filters and a more recent technique
known as Deep Audio Priors Design (DAP). Wiener filters were used by [34] to reduce the
noise in audios utilizing the frequency domain. DAP Design is an update of U-Net that
uses dilated convolutions and dense connections [35].

The evaluation is made with a set of audios that comprises 400 instances, 100 for each
use case. Each audio has a length of 3 s, with a sample rate of 22 kHz and a bid-depth of 16.

To make an accurate comparison, we use two metrics: MSE and a Signal-to-Noise
Ratio (NSR). The first one measures the Euclidean distance between two images which
are the spectrograms of an audio with background noise and the same audio after being
processed by the denoising model, [36]. The larger the value of MSE, the greater the
difference between the noise signal and the cleaned signal, from which it can be inferred
that the model eliminates background noise better. The metric is depicted in Equation (9)
where yi is the value of a particular position in the noisy audio and ŷi is the value of the
denoising audio in the same place.
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MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (9)

The second metric measures the difference in decibels (dB) between the same two
signals once they have been converted back to the audio domain. SNR values range
between −35 and 35 dB, which is the theoretical magnitude of noise. The closer the
value is to zero (either positive or negative), the better the performance of the model [37].
Equation (10) mathematically formalizes this metric. In the Equation, Psignal_noise refers to
the audio with background noise and Pnoise only to the background noise. By subtracting
the noise from the noise with the audio, we obtain the audio or signal, allowing us to
calculate the signal-to-noise ratio.

SNRdB = 10 log10

(Psignal_noise − Pnoise

Pnoise

)
(10)

In Table 3, we compile both metrics and compare our model with the two pro-
posed baselines.

Table 3. Comparison against baselines.

Use Case MSE SNR

Aircrafts Wiener 0.0006 ± 0.0035 16.378 ± 7.4762
DAP Design 0.0761 ± 0.1621 -
Our model 0.0182 ± 0.0234 1.3702 ± 0.8983

Storms and rain
Wiener 0.0007 ± 0.0064 16.908 ± 6.8374

DAP Design 0.0877 ± 0.0879 -
Our model 0.0202 ± 0.0758 −1.2728 ± 3.7621

Traffic jams
Wiener 0.0006 ± 0.0036 17.328 ± 13.1234

DAP Design 0.0693 ± 0.3245 -
Our model 0.0154 ± 0.2522 0.4991 ± 1.3253

Wind
Wiener 0.0004 ± 0.0003 17.505 ± 9.6523

DAP Design 0.0687 ± 0.0319 -
Our model 0.0182 ± 0.9325 −0.1870 ± 3.2167

It is important to note that MSE is not an accurate metric for assessing audio quality
as it does not always align well with the human perception of sound quality that involves
subjective factors such as psychoacoustics, human hearing sensitivity, and preferences.
When starting with an image that is essentially a Fourier transform of an audio signal,
converting it back into an audio signal using the inverse transform does not necessarily
reflect how well the audio will turn out. Even a minor change in a single pixel can drastically
alter the sound obtained upon reversing the transformation. This fact is due to the use
of a parameter of the original audio called the phase of the wave. This parameter is lost
when transforming the audio into a spectrogram and a change in its value can make the
audio obtained after transforming the spectrogram back into something inaudible. In our
case, we have used the Inverse STF, and we have used the phase of the audio with noise
that is used as an input in the model. Although the results are not perfect, the evaluation
demonstrates that they are good enough, but should be improved in the future.

Therefore, MSE values do not precisely represent differences in the quality of the
resulting sound. However, we can assert that if the MSE is very low, the two images
are highly similar at the pixel level. This implies that the spectrogram obtained after the
noise-cleaning process is highly like the original (noisy) one that was fed into the model,
meaning that the cleaning process worked poorly. Therefore, while MSE may not be a
perfect indicator of audio quality, it does serve as a useful metric for evaluating how closely
the processed image resembles the original one in terms of their pixel-level similarity. SNR
works with the converted signal and reflects whether the amount of noise in the signal is
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high or low. A combination of both metrics provides a more comprehensive evaluation of
the model’s performance in both the image and audio domains.

Based on the results shown in Table 3, our model outperforms in all scenarios, reducing
both the image noise and the actual noise in the subsequently converted signal. In terms of
MSE, Wiener filters perform poorly across all four use cases, as the audios being compared
are nearly identical. The DAP Design shows better results, but it is important to note that
this method removes all information, including speech, resulting in silent audio. Obviously,
in this case, the MSE value should be high, as noisy audio differs significantly from silent
audio. MSE can still be calculated when comparing images, even if the audio signal itself is
inaudible. Regarding the Signal-to-Noise Ratio (SNR), our model significantly outperforms
Wiener filters. On the other hand, DAP Design’s approach leads to silent audio, rendering
the SNR value empty.

When we look at the results for different situations, it seems that storm and rain noises
are easier to eliminate when evaluated using both MSE and SNR metrics. When considering
the standard deviation, instances involving wind noise tend to yield poorer results in some
examples. This variability in performance across different types of environmental noise
underscores the complexity of the problem and the need for a more nuanced approach to
noise reduction in audio signals.

4.1.2. Evaluation of Background Noise Suppression Based on Noise Type

This evaluation quantifies the differences between the spectrogram of the original
audio, sourced from the TED-LIUM 3 dataset before adding background noise, and two
other spectrograms: one corresponding to the audio with background noise and the other
to the denoised audio. The relationship between these values serves as a measure of the
level of noise suppression relative to the original clean signal. In other words, it helps
us identify which type of background noise has been most effectively suppressed. By
referencing both values to the same baseline—the original TED talk audio that is free
of noise—we obtain a common metric for all scenarios. The difference between these
metrics indicates the effectiveness of noise reduction in each case. Specifically, the better
the second measurement (the difference between the restored audio spectrogram and the
original audio spectrogram) is compared to the first (the difference between the noisy audio
spectrogram and the original audio spectrogram), the more effectively the background
noise has been eliminated in that particular use case.

We will use two metrics applied to the spectrograms: again, the MSE and the Structural
Similarity Index Measure (SSIM). The SSIM was introduced by [38] and measures the
perceptual similarity between images regardless of which is of better quality. It considers
three image features, luminance (l), contrast (c), and structure (s), that are weighted through
three constants: α, β, and γ. SSIM is calculated using Equation (11):

SSIM(x, y) = [l(x, y)]α· [c(x, y)]β· [s(x, y)]γ (11)

This evaluation has used 100 samples for each scenario from the previous evaluation.
So, 400 instances have been evaluated in total. Regarding the scikit-image library, α, β, and
γ values by default are 0.01, 0.03, and 1.5, respectively [39].

For both metrics, the same analysis can be applied. The suppression of wind noise
yields the poorest performance. Both in absolute terms and as a percentage, the difference
in the MSE and SSIM values is the smallest. In the case of the MSE, which measures
the pixel-to-pixel similarity between spectrograms, the restored audio does resemble the
original more than the noisy audio does, but by a smaller percentage (37.2%) compared to
other scenarios. It is worth noting that these are the cases that most closely resemble the
original audio, meaning that the distortion introduced by the noise is the lowest among
all of the use cases. Therefore, the margin for improvement is smaller, as will be reflected
in the subjective assessment where noise cleanliness depends on auditory perception. In
the other scenarios, although the MSE of the restored audio is still high, the reduction
compared to the audio with background noise is much greater. Specifically, in the case
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of thunderstorms and rainfall, the quality of the work is significantly higher. This is also
noteworthy considering that these types of background noise most severely affect the
intelligibility of the original spoken segments. A similar analysis and conclusion apply
when considering the SSIM metric instead of the MSE. In this case, storms are the best,
wind is the worst, and traffic interchanges its position with aircrafts. The results of Table 4
confirm what the comparison with the baselines describes in Table 3.

Table 4. Comparison between spectrograms.

Use Case MSE SSIM

Aircrafts Noisy audio 1628 ± 1246 0.6173 ± 0.1257
Restored audio 680 ± 323 0.6257 ± 0.1012

Absolute difference
% reduction

948
58.2%

−0.0084
−1.4%

Storms and rain Noisy audio 1867 ± 1100 0.5780 ± 0.0848
Restored audio 698 ± 267 0.6075 ± 0.0754

Absolute difference
% reduction

1169
62.6%

−0.0375
−5.1%

Traffic jams Noisy Audio 1329 ± 1139 0.6282 ± 0.1127
Restored audio 609 ± 349 0.6437 ± 0.0891

Absolute difference
% reduction

720
54.2%

−0.0155
−2.5%

Wind Noisy audio 683 ± 541 0.7287 ± 0.1107
Restored audio 429 ± 174 0.7311 ±0.0769

Absolute difference
% reduction

209
37.2%

−0.0024
−0.3%

4.2. Subjective Tests

We present an evaluation based on listening to audios. In this case, we have created
a set of audios that comprises the four use cases that have been listened to by a group of
people to evaluate the amount of background noise that has been suppressed. The dataset
consists of 22 different audios; for each audio, the volunteers must listen to the audio with
background noise and the same audio after being processed by our model. For each of the
four use cases, there were four different audios, totaling 20 audios. The two remaining
audios correspond to control audios where no background noise was eliminated and have
been used to check that the surveyed people were performing the test well.

During the process, volunteers could listen to each pair of audios as often as possible.
Then, they had to choose between four different options: “No or practically no noise
eliminated”, “Some noise eliminated”, “Much noise eliminated”, or “All or almost all noise
eliminated”. The evaluation was delivered through a Google Form and 61 people answered
it. All the information has been compiled in Figure 3. The top pie chart represents the
average results of the evaluation of the 20 valid audios. The other pie charts depict the
evaluation results for each of the use cases.

Looking at the figure above, we can conclude that most people think that the model
could suppress much or almost all or the noise (90%). Only in a few cases (10%), did the
evaluation result in no noise eliminated. If we look at the use cases separately, there are no
big differences in the obtaining of good evaluations (from much noise to all noise) with
percentages of around 90%. It should be highlighted that the wind scenario is the one with
more cases of removing all the noise, which corroborates the objective evaluations obtained
with the mathematical metrics (the margin for improvement is less than in the other
cases). If we look at the scenarios considering that as much noise as possible is eliminated,
storms/wind is the one that performs the best, but the differences are not remarkable.
Another interesting point is that wind/storms, rain, and traffic are the scenarios that have
reported cases where no noise was eliminated.
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5. Conclusions and Future Work

Audio signals can be processed either in the time domain, treating the raw signal,
or in the frequency domain. In the latter case, visual representations of the audio (im-
ages) are used. This research proposes a model for cleaning background noise in audio
signals (human speech) using a VAE composed of 2D convolutional filters applied to a
two-dimensional representation of the audio signal, namely power log spectrograms. In
the research, we propose four different scenarios that simulate environmental noise pro-
duced by storms, wind, traffic jams, and aircrafts. The whole workflow of the research
comprises different stages. First, we created an ad hoc dataset by mixing speech audios
with background noises, representing the four use cases. Then, we used this dataset to
train a VAE with pairs of audios with background noise and only the speech audio using
spectrograms. To measure if we had trained the model accurately, we used objective and
subjective measures. Objective measures allowed us to measure mathematically, which
is the scenario where the background noise is more difficult to suppress and whether
the proposed model overcomes other models proposed before. The subjective evaluation
allowed us to confirm the previous results based on the auditive perception of some people.
Subjective evaluations are normally not performed in the works compiled in the state-of-
the-art as there is a need to transform the spectrograms into audios so they can be listened
to by the surveyed people. This transformation is not easy to apply as it depends on the
phase that corresponds to the original speech’s clean audio. In our case, we have applied
the IFTF and although it does not achieve perfect results, it does obtain perfectly evaluable
audios by using the phases of the audios that are the inputs for the model.

The mathematical metrics produced by our model confirm that it performs better than
the selected baselines in all cases. If we look at the results between the use cases, we can
see that storms and rains are easier to eliminate. Looking at the standard deviation, we
can see that wind cases have the worse results in a few examples. In this case, it should be
highlighted that the scenario of background wind is the one with the smallest differences
between the noisy audio and the cleaned one. This is confirmed in the objective evaluation
where surveyed people evaluate this scenario as the one with the best performance.

As future works, the main need is to obtain a method that could calculate, in a more
precise way, the phase of the cleaned audio. Also, there is a need to obtain a more balanced
dataset where the differences between the audio with background noise and the audio after
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using the model are smaller between scenarios. From a practical perspective, the model
could be integrated into applications, so the model works with streaming audio.

6. Patents

The Spanish Patent and Trademark Office (OEPM) has processed the patent application
related to the work presented in this article, assigning it the number P202330047 and the
filing date of 24 January 2023.
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