An Analytic Expression for the Inverse Involute.
Author: López Rosado, Alberto
Abstract: This article introduces new types of rational approximations of the inverse involute function, widely used in gear engineering,
allowing the processing of this function with a very low error. (is approximated function is appropriate for engineering
applications, with a much reduced number of operations than previous formulae in the existing literature, and a very efficient
computation. The proposed expressions avoid the use of iterative methods. The theoretical foundations of the approximation
theory of rational functions, the Chebyshev and Jacobi polynomials that allow these approximations to be obtained, are presented
in this work, and an adaptation of the Remez algorithm is also provided, which gets a null error at the origin. This way, approximations
in ranges or degrees different from those presented here can be obtained. A rational approximation of the direct
involute function is computed, which avoids the computation of the tangent function. Finally, the direct polar equation of the
circle involute curve is approximated with some application examples.
Files in this item
Files | Size | Format | View |
---|---|---|---|
Inverse involute Formulae Data.xlsx | 66.30Kb | Microsoft Excel 2007 | View/ |
Alberto López.pdf | 1.505Mb | View/ |
Collections
- INGENIERÍA [87]