Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials

Loading...
Thumbnail Image
Identifiers

Publication date

2022

Start date of the public exhibition period

End date of the public exhibition period

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Composites Communications
Metrics
Google Scholar
Share

Research Projects

Organizational Units

Journal Issue

Abstract

With the improvement of people's living level, smart home and comfortable life put forward novel and highly scientific requirements for building materials and home environment. Environmental protection, renewability, processing convenience and use safety (non-toxic/fire safety) are all core indicators that need to be considered in an all-round way in the process of material design. In this work, we used a simple and efficient green process by blending ammonium polyphosphate (APP) and poly (glycerol-itaconic acid) loaded polyethylene glycol (PEG) to prepare fire safe phase change materials (PCMs). The flame retardancy, phase change performance and thermal response behavior (including form stability, thermal conductivity, cycle stability, and latent heat etc.) were systematically characterized. The results showed that limiting oxygen index (LOI) increased significantly with the increase of APP content. Typically, when the filling amount of APP reached 15 wt%, the LOI value increased from 21.6% to 28.7%, vertical testing reached UL-94 V0 rating and the pHRR decreased by 36.15%. The as-prepared PCMs show excellent form stability, and the enthalpy of phase change keeps higher than 70 J g−1, which is at the high level as that of same kinds of PCMs. Notably, due to its high preparation efficiency for PCM fabrication and the profiles of all bio-based supporting matrix, solvent-free pathway, mild curing temperature, and fire safety, it is expected to be effectively applied in building for the thermal regulation.

Doctoral program

Description

Keywords

Flame retardant, Solvent free, Energy storage materials, Bio-based

Citation

Collections