Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs).

dc.contributor.authorGómez, Rosa M.
dc.contributor.authorSánchez, Magdy Y.
dc.contributor.authorPortela Lomba, María
dc.contributor.authorGhotme, Kemel
dc.contributor.authorBarreto, George E.
dc.contributor.authorSierra Isturiz, Javier
dc.contributor.authorMoreno Flores, María Teresa
dc.date.accessioned2020-12-10T11:16:43Z
dc.date.available2020-12-10T11:16:43Z
dc.date.issued2018
dc.description.abstractThe prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell‐based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.spa
dc.description.extent48973 KBspa
dc.identifier.doi10.1002/glia.23282spa
dc.identifier.issn0894-1491spa
dc.identifier.urihttp://hdl.handle.net/10641/2134
dc.language.isoengspa
dc.publisherGliaspa
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/glia.23282spa
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleCell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs).spa
dc.typejournal articlespa
dc.type.hasVersionSMURspa
dspace.entity.typePublication
relation.isAuthorOfPublicationbe7339a7-8121-44b8-bccb-eeef5135428c
relation.isAuthorOfPublicationba4d2eb9-c03e-4c47-97ae-25d9e5bfc8f2
relation.isAuthorOfPublication.latestForDiscoverybe7339a7-8121-44b8-bccb-eeef5135428c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cell_gomez_GLIA_2018.pdf
Size:
47.82 MB
Format:
Adobe Portable Document Format
Description: