Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome.

Loading...
Thumbnail Image
Identifiers

Publication date

2021

Start date of the public exhibition period

End date of the public exhibition period

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Human Genomics
Metrics
Google Scholar
Share

Research Projects

Organizational Units

Journal Issue

Abstract

Background Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. Methods To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). Results The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. Conclusions Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.

Doctoral program

Description

Keywords

Variome, Dystonia, Cerebral palsy, Neuromotor delay, Epilepsy

Citation