Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation.

Loading...
Thumbnail Image
Identifiers

Publication date

1997

Start date of the public exhibition period

End date of the public exhibition period

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Oncogene
Metrics
Google Scholar
Share

Research Projects

Organizational Units

Journal Issue

Abstract

We have used the yeast two-hybrid system to identify proteins that interact with Vav, a GDP/GTP exchange factor for the Rac-1 GTPase that plays an important role in cell signaling and oncogenic transformation. This experimental approach resulted in the isolation of Cbl-b, a signal transduction molecule highly related to the mammalian c-cbl proto-oncogene product and to the C. elegans Sli-1 protein, a negative regulator of the EGF-receptor-like Let23 protein. The interaction between Vav and Cbl-b requires the entire SH3-SH2-SH3 carboxy-terminal domain of Vav and a long stretch of proline-rich sequences present in the central region of Cbl-b. Stimulation of quiescent rodent fibroblasts with either epidermal or platelet-derived growth factors induces an increased affinity of Vav for Cbl-b and results in the subsequent formation of a Vav-dependent trimeric complex with the ligand-stimulated tyrosine kinase receptors. During this process, Vav, but not Cbl-b, becomes highly phosphorylated on tyrosine residues. Overexpression of Cbl-b inhibits the signal transduction pathway of Vav that leads to the stimulation of c-Jun N-terminal kinase. By contrast, expression of truncated Cbl-b proteins and of missense mutants analogous to those found in inactive Sli-1 proteins have no detectable effect on Vav activity. These results indicate that Vav and Cbl-b act coordinately in the first steps of tyrosine protein kinase receptor-mediated signaling and suggest that members of the Sli-1/Cbl family are also negative regulators of signal transduction in mammalian cells.

Doctoral program

Description

Keywords

Cbl family, Tyrosine phosphorylation, JNK activation

Citation