Lara, BeatrizGutiérrez Hellín, JorgeGarcía Bataller, AlbertoRodríguez Fernández, PalomaRomero Moraleda, BlancaDel Coso, Juan2019-11-222019-11-2220191436-6207http://hdl.handle.net/10641/1752Purpose Recent investigations have established that the ingestion of a moderate dose of caffeine (3–6 mg kg−1) can increase exercise and sports performance in women. However, it is unknown whether the ergogenicity of caffeine is similar during all phases of the menstrual cycle. The aim of this investigation was to determine the ergogenic effects of caffeine in three phases of the menstrual cycle. Methods Thirteen well-trained eumenorrheic triathletes (age = 31 ± 6 years; body mass = 58.6 ± 7.8 kg) participated in a double-blind, cross-over, randomised experimental trial. In the (1) early follicular (EF); (2) preovulation (PO); (3) and mid luteal (ML) phases, participants either ingested a placebo (cellulose) or 3 mg kg−1 of caffeine in an opaque and unidentifiable capsule. After a 60-min wait for substance absorption, participants performed an incremental maximal cycle ergometer test until volitional fatigue (25 W/min) to assess peak aerobic cycling power (Wmax). Results In comparison to the placebo, caffeine increased Wmax in the EF (4.13 ± 0.69 vs. 4.24 ± 0.71 W kg−1, Δ = 2.7 ± 3.3%, P = 0.01), in the PO (4.14 ± 0.70 vs. 4.27 ± 0.73 W kg−1, Δ = 3.3 ± 5.0%; P = 0.03) and in the ML (4.15 ± 0.69 vs. 4.29 ± 0.67 W kg−1, Δ = 3.6 ± 5.1%; P = 0.01) phases. The magnitude of the caffeine ergogenic effect was similar during all of the menstrual cycle phases (P = 0.85). Conclusion Caffeine increased peak aerobic cycling power in the early follicular, preovulatory, and mid luteal phases. Thus, the ingestion of 3 mg of caffeine per kg of body mass might be considered an ergogenic aid for eumenorrheic women during all three phases of the menstrual cycle.engAtribución-NoComercial-SinDerivadas 3.0 Españahttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ErgogenicityStimulantExercisePhysical activityErgogenic effects of caffeine on peak aerobic cycling power during the menstrual cyclejournal articleopen access10.1007/s00394-019-02100-7