Godino Ojer, MarinaMorales Torres, SergioPérez Mayoral, ElenaMaldonado Hódar, Francisco J.2022-01-142022-01-1420222213-3437http://hdl.handle.net/10641/2682A highly efficient methodology for the selective synthesis of nitrogen heterocycles via Friedländer reaction using carbon materials supported ZnO catalysts under the green chemistry domain is presented. The influence of the physicochemical properties of different carbon supports, in particular an activated carbon (AC), multi-walled carbon nanotubes (MWCNT) and a carbon aerogel (CA), on the catalytic performance is discussed. The developed catalysts are easily prepared by simple incipient wetness impregnation and a subsequent thermal treatment. These ZnO/carbon catalysts showed a great performance in the Friedländer condensation of 2-amino-5-chlorobenzaldehyde and carbonylic compounds with enolizable hydrogens, under solvent-free and mild conditions, affording in all cases selectively a total conversion to the corresponding quinoline. Both the Zn loading in combination with the developed microporosity of the selected carbon supports seem to be the key factors determining the catalytic performance. Yields obtained with ZnO/carbon composites catalysts are superior to those obtained by others widely used in fine chemistry such as, Zn-catalysts supported on mesoporous silica (SBA-15) and Zn-metal-organic-frameworks (MOF).engAtribución-NoComercial-SinDerivadas 3.0 Españahttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ZnO/carbon compositesMetal-organic-frameworksMesoporous silicaFriedländer reactionFine chemistryGreen chemistryEnhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines.journal articleopen access10.1016/j.jece.2021.106879