Person:
Grande Rodríguez, Mª Teresa

Loading...
Profile Picture

First Name

Mª Teresa

Last Name

Grande Rodríguez

Affiliation

Faculty

Biotecnología

Department

Area

Identifiers

Search Results

Now showing 1 - 10 of 10
  • Item
    Potentiation of amyloid beta phagocytosis and amelioration of synaptic dysfunction upon FAAH deletion in a mouse model of Alzheimer’s disease.
    (Journal of Neuroinflammation, 2021) Ruiz Pérez, Gonzalo; Ruiz de Martín Esteban, Samuel; Marqués, Sharai; Aparicio, Noelia; Grande Rodríguez, Mª Teresa; Benito Cuesta, Irene; Martínez Relimpio, Ana María; Arnanz, M. Andrea; Tolón, Rosa María; Posada Ayala, María; Cravatt, Benjamin F.; Esteban, José A.; Romero, Julián; Palenzuela Muñoz, Rocío
    Background: The complex pathophysiology of Alzheimer’s disease (AD) hampers the development of effective treatments. Attempts to prevent neurodegeneration in AD have failed so far, highlighting the need for further clarification of the underlying cellular and molecular mechanisms. Neuroinflammation seems to play a crucial role in disease progression, although its specific contribution to AD pathogenesis remains elusive. We have previously shown that the modulation of the endocannabinoid system (ECS) renders beneficial effects in a context of amyloidosis, which triggers neuroinflammation. In the 5xFAD model, the genetic inactivation of the enzyme that degrades anandamide (AEA), the fatty acid amide hydrolase (FAAH), was associated with a significant amelioration of the memory deficit. Methods: In this work, we use electrophysiology, flow cytometry and molecular analysis to evaluate the cellular and molecular mechanisms underlying the improvement associated to the increased endocannabinoid tone in the 5xFAD mouse− model. Results: We demonstrate that the chronic enhancement of the endocannabinoid tone rescues hippocampal synaptic plasticity in the 5xFAD mouse model. At the CA3–CA1 synapse, both basal synaptic transmission and longterm potentiation (LTP) of synaptic transmission are normalized upon FAAH genetic inactivation, in a CB1 receptor (CB1R)- and TRPV1 receptor-independent manner. Dendritic spine density in CA1 pyramidal neurons, which is notably decreased in 6-month-old 5xFAD animals, is also restored. Importantly, we reveal that the expression of microglial factors linked to phagocytic activity, such as TREM2 and CTSD, and other factors related to amyloid beta clearance and involved in neuron–glia crosstalk, such as complement component C3 and complement receptor C3AR, are specifically upregulated in 5xFAD/FAAH−/− animals. Conclusion: In summary, our findings support the therapeutic potential of modulating, rather than suppressing, neuroinflammation in Alzheimer’s disease. In our model, the long-term enhancement of the endocannabinoid tone triggered augmented microglial activation and amyloid beta phagocytosis, and a consequent reversal in the neuronal phenotype associated to the disease
  • Item
    Endocannabinoid regulation of amyloid-induced neuroinflammation
    (Neurobiology of Aging, 2015) Vázquez, Carmen; Tolón, Rosa María; Grande Rodríguez, Mª Teresa; Caraza, Marina; Moreno, Marta; Koester, Erin C.; Villaescusa, Borja; Ruiz Valdepeñas, Lourdes; Fernández Sánchez, Francisco Javier; Cravatt, Benjamin F.; Hillard, Cecilia J.; Romero, Julián
    The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer’s disease (AD). We aimed to evaluate the effect of the pharmacological and genetic inhibiton of anandamide (AEA)-degrading enzyme in a mouse model of AD (5xFAD). Pharmacological inhibition of the fatty acid amide hydrolase (FAAH) had little impact on the expression of key enzymes and cytokines as well as on the cognitive impairment and plaque deposition and gliosis in 5xFAD mice. CB1 blockade exacerbated inflammation in this transgenic mouse model of AD. The genetic inactivation of FAAH led to increases in the expression of inflammatory cytokines. At the same time, FAAH-null 5xFAD mice exhibited a behavioral improvement in spatial memory that was independent of the level of anxiety and was not CB1-mediated. Finally, mice lacking FAAH showed diminished soluble amyloid levels, neuritic plaques and gliosis. These data reinforce the notion of a role for the endocannabinoid system in neuroinflammation and open new perspectives on the relevance of modulating endocannabinoid levels in the inflammed brain.
  • Item
    Role of interleukin 1-beta in the inflammatory response in a fatty acid amide hydrolase-knockout mouse model of Alzheimer’s disease.
    (Biochemical Pharmacology, 2018) Aparicio, Noelia; Grande Rodríguez, Mª Teresa; Ruiz de Martín Esteban, Samuel; López, Alicia; Ruiz Pérez, Gonzalo; Amores, Mario; Vázquez, Carmen; Martínez Relimpio, Ana María; Ruth Pazos, M.; Cravatt, Benjamin F.; Tolón, Rosa María; Romero, Julián
    The search for novel therapies for the treatment of Alzheimer’s disease is an urgent need, due to the current paucity of available pharmacological tools and the recent failures obtained in clinical trials. Among other strategies, the modulation of amyloid-triggered neuroinflammation by the endocannabinoid system seems of relevance. Previous data indicate that the enhancement of the endocannabinoid tone through the inhibition of the enzymes responsible for the degradation of their main endogenous ligands may render beneficial effects. Based on previously reported data, in which we described a paradoxical effect of the genetic deletion of the fatty acid amide hydrolase, we here aimed to expand our knowledge on the role of the endocannabinoid system in the context of Alzheimer’s disease. To that end, we inhibited the production of interleukin-1, one of the main inflammatory cytokines involved in the neuroinflammation triggered by amyloid peptides, in a transgenic mouse model of this disease by using minocycline, a drug known to impair the synthesis of this cytokine. Our data suggest that interleukin-1 may be instrumental in order to achieve the beneficial effects derived of fatty acid amide hydrolase genetic inactivation. This could be appreciated at the molecular (cytokine expression, amyloid production, plaque deposition) as well as behavioral levels (memory impairment). We here describe a previously unknown link between the endocannabinoid system and interleukin-1 in the context of Alzheimer’s disease that open new possibilities for the development of novel therapeutics.
  • Item
    Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice.
    (Brain, Behavior, and Immunity, 2018) Saravia, Rocío; Ten Blanco, Marc; Grande Rodríguez, Mª Teresa; Maldonado, Rafael; Berrendero, Fernando
    Nicotine withdrawal is associated with cognitive deficits including attention, working memory, and episodic memory impairments. These cognitive deficits are a hallmark of nicotine abstinence which could be targeted in order to prevent smoking relapse. The underlying mechanisms, however, are poorly understood. In this study, memory impairment was observed in mice 4 days after the precipitation of nicotine withdrawal by the nicotinic antagonist mecamylamine. The presence of cognitive deficits correlated with microglial activation in the hippocampus and the prefrontal cortex. Moreover, an increased expression of neuroinflammatory markers including IL1β, TNFα and IFNγ was found in both memory-related brain regions. Notably, flow cytometric analysis also revealed an enhancement of TNFα and IFNγ plasmatic levels at the same time point during nicotine withdrawal. Impaired neurogenesis, as shown by reduction in the expression of the endogenous cell proliferation marker Ki67 and the early neuron marker doublecortin, was also associated with nicotine abstinence. Treatment with the non-psychoactive cannabinoid cannabidiol abolished memory impairment of nicotine withdrawal and microglia reactivity, reduced the expression of IL1β and IFNγ in the hippocampus and the prefrontal cortex, respectively, and normalized Ki67 levels. The nonsteroidal anti-inflammatory drug indomethacin also prevented cognitive deficits and microglial reactivity during withdrawal. These data underline the usefulness of anti-inflammatory agents to improve cognitive performance during early nicotine abstinence.
  • Item
    Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cellpermeable fluorescent probe.
    (Chemical Science, 2022) Gazzi, Thais; Grande Rodríguez, Mª Teresa; Nazare, Marc; Romero, Julián
    Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.
  • Item
    Altered glial expression of the cannabinoid 1 receptor in the subiculum of a mouse model of Alzheimer's disease.
    (Glia, 2022) Terradillos, Itziar; Bonilla-Del Río, Itziar; Puente, Nagore; Serrano, Maitane; Mimenza, Amaia; Lekunberri, Leire; Anaut-Lusar, Ilazki; Reguero, Leire; Gerrikagoitia, Inmaculada; Ruiz de Martín Esteban, Samuel; Hillard, Cecilia J.; Grande Rodríguez, Mª Teresa; Romero, Julián; Elezgarai, Izaskun; Grandes, Pedro
    The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aβ)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2EGFP/f/f (AD model) and CB2EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2EGFP/f/f, but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.
  • Item
    Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy
    (BioMed Research International, 2014) Rodríguez Peña, Ana B.; Fuentes Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande Rodríguez, Mª Teresa; Eleno, Nélida; Pérez Barriocanal, Fernando; López Novoa, José Mª
    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.
  • Item
    Snail1 factor behaves as a therapeutic target in renal fibrosis.
    (Nature Medicine, 2015) Grande Rodríguez, Mª Teresa; López Blau, Cristina; Sánchez Laorden, Berta; Frutos, Cristina A. de; Boutet, Agnès; Grant Rowe, R.; Weiss, Stephen J.; López Novoa, José M.; Nieto, M. Angela
    Kidney fibrosis is a devastating disease that leads to organ failure, and no specific treatment is available to preserve organ function. In fibrosis, myofibroblasts accumulate in the interstitium leading to massive deposition of extracellular matrix and organ disfunction. The origin of myofibroblasts is multiple and the contribution of renal epithelial cells after undergoing epithelial-to-mesenchymal transition (EMT) is still debated. In a model unable to reactivate the EMT inducer Snail1 upon damage, we show that Snail1 is required in renal epithelial cells for the development of fibrosis. Damage-mediated Snail1 reactivation induces a partial EMT that relays fibrotic and inflammatory signals to the interstitium through the activation of TGF-β and NF-B pathways. Snail1-induced fibrosis can be reverted in vivo and inhibiting Snail1 in a model of obstructive nephropathy highly ameliorates fibrosis. These results reconcile conflicting data on the role of EMT in renal fibrosis and provide avenues for the design of antifibrotic therapies.
  • Item
    Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimer’s disease.
    (Journal of Neuroinflammation, 2018) López, Alicia; Aparicio, Noelia; Pazos, M. Ruth; Grande Rodríguez, Mª Teresa; Barreda Manso, Mª Asunción; Benito Cuesta, Irene; Vázquez, Carmen; Amores, Mario; Ruiz Pérez, Gonzalo; García García, Elena; Beatka, Margaret; Tolón, Rosa María; Dittel, Bonnie N.; Hillard, Cecilia J.; Romero, Julián
    Background: Because of their low levels of expression and the inadequacy of current research tools, CB2 cannabinoid receptors (CB2R) have been difficult to study, particularly in the brain. This receptor is especially relevant in the context of neuroinflammation, so novel tools are needed to unveil its pathophysiological role(s). Methods: We have generated a transgenic mouse model in which the expression of enhanced green fluorescent protein (EGFP) is under the control of the cnr2 gene promoter through the insertion of an Internal Ribosomal Entry Site followed by the EGFP coding region immediately 3′ of the cnr2 gene and crossed these mice with mice expressing five familial Alzheimer’s disease (AD) mutations (5xFAD). Results: Expression of EGFP in control mice was below the level of detection in all regions of the central nervous system (CNS) that we examined. CB2R-dependent-EGFP expression was detected in the CNS of 3-month-old AD mice in areas of intense inflammation and amyloid deposition; expression was coincident with the appearance of plaques in the cortex, hippocampus, brain stem, and thalamus. The expression of EGFP increased as a function of plaque formation and subsequent microgliosis and was restricted to microglial cells located in close proximity to neuritic plaques. AD mice with CB2R deletion exhibited decreased neuritic plaques with no changes in IL1β expression. Conclusions: Using a novel reporter mouse line, we found no evidence for CB2R expression in the healthy CNS but clear up-regulation in the context of amyloid-triggered neuroinflammation. Data from CB2R null mice indicate that they play a complex role in the response to plaque formation.
  • Item
    Cannabinoid CB2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer’s Disease.
    (Frontiers in Pharmacology, 2022) Ruiz de Martín Esteban, Samuel; Benito Cuesta, Irene; Terradillos, Itziar; Martínez Relimpio, Ana María; Arnanz, M. Andrea; Ruiz-Pérez, Gonzalo; Korn, Claudia; Raposo, Catarina; Sarott, Roman C.; Westphal, Matthias V.; Elezgarai, Izaskun; Carreira, Erick M.; Hillard, Cecilia J.; Grether, Uwe; Grandes, Pedro; Grande Rodríguez, Mª Teresa; Romero, Julián
    The distribution and roles of the cannabinoid CB2 receptor in the CNS are still a matter of debate. Recent data suggest that, in addition to its presence in microglial cells, the CB2 receptor may be also expressed at low levels, yet biologically relevant, in other cell types such as neurons. It is accepted that the expression of CB2 receptors in the CNS is low under physiological conditions and is significantly elevated in chronic neuroinflammatory states associated with neurodegenerative diseases such as Alzheimer’s disease. By using a novel mouse model (CB2 EGFP/f/f), we studied the distribution of cannabinoid CB2 receptors in the 5xFAD mouse model of Alzheimer’s disease (by generating 5xFAD/ CB2 EGFP/f/f mice) and explored the roles of CB2 receptors in microglial function. We used a novel selective and brain penetrant CB2 receptor agonist (RO6866945) as well as mice lacking the CB2 receptor (5xFAD/CB2 −/−) for these studies. We found that CB2 receptors are expressed in dystrophic neurite-associated microglia and that their modulation modifies the number and activity of microglial cells as well as the metabolism of the insoluble form of the amyloid peptide. These results support microglial CB2 receptors as potential targets for the development of amyloid-modulating therapies.