Insulin regulates neurovascular coupling through astrocytes.

Loading...
Thumbnail Image
Identifiers

Publication date

2022

Start date of the public exhibition period

End date of the public exhibition period

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Proceedings of the National Academy of Sciences (PNAS)
Metrics
Google Scholar
Share

Research Projects

Organizational Units

Journal Issue

Abstract

Circulating insulin enters the brain through mechanisms incompletely characterized. We now report that mice lacking insulin receptors (IR) in astrocytes (GFAP-IR KO mice) show blunted brain responses to insulin, uncoupling of brain blood flow with glucose uptake with concomitant changes in brain vasculature and glucose transporter 1 levels. IR-deficient astrocytes show increased expression of HIF-1α/VEGF, promote growth of co-cultured endothelial cells, display increased reactive oxidant species (ROS) and disturbed mitochondrial activity. Treatment with the antioxidant N-acetylcysteine (NAC), ameliorated high ROS levels, normalized angiogenic signaling, and mitochondrial function including mitochondrial glucose and oxygen sensors. In vivo treatment with NAC also normalized brain perfusion. Thus, insulin receptors in astrocytes regulate neuro-vascular coupling.

Doctoral program

Description

Keywords

Citation