Person:
Palenzuela Muñoz, Rocío

Loading...
Profile Picture

First Name

Rocío

Last Name

Palenzuela Muñoz

Affiliation

Faculty

Medicina

Department

Area

Identifiers

Search Results

Now showing 1 - 6 of 6
  • Item
    Potentiation of amyloid beta phagocytosis and amelioration of synaptic dysfunction upon FAAH deletion in a mouse model of Alzheimer’s disease.
    (Journal of Neuroinflammation, 2021) Ruiz Pérez, Gonzalo; Ruiz de Martín Esteban, Samuel; Marqués, Sharai; Aparicio, Noelia; Grande Rodríguez, Mª Teresa; Benito Cuesta, Irene; Martínez Relimpio, Ana María; Arnanz, M. Andrea; Tolón, Rosa María; Posada Ayala, María; Cravatt, Benjamin F.; Esteban, José A.; Romero, Julián; Palenzuela Muñoz, Rocío
    Background: The complex pathophysiology of Alzheimer’s disease (AD) hampers the development of effective treatments. Attempts to prevent neurodegeneration in AD have failed so far, highlighting the need for further clarification of the underlying cellular and molecular mechanisms. Neuroinflammation seems to play a crucial role in disease progression, although its specific contribution to AD pathogenesis remains elusive. We have previously shown that the modulation of the endocannabinoid system (ECS) renders beneficial effects in a context of amyloidosis, which triggers neuroinflammation. In the 5xFAD model, the genetic inactivation of the enzyme that degrades anandamide (AEA), the fatty acid amide hydrolase (FAAH), was associated with a significant amelioration of the memory deficit. Methods: In this work, we use electrophysiology, flow cytometry and molecular analysis to evaluate the cellular and molecular mechanisms underlying the improvement associated to the increased endocannabinoid tone in the 5xFAD mouse− model. Results: We demonstrate that the chronic enhancement of the endocannabinoid tone rescues hippocampal synaptic plasticity in the 5xFAD mouse model. At the CA3–CA1 synapse, both basal synaptic transmission and longterm potentiation (LTP) of synaptic transmission are normalized upon FAAH genetic inactivation, in a CB1 receptor (CB1R)- and TRPV1 receptor-independent manner. Dendritic spine density in CA1 pyramidal neurons, which is notably decreased in 6-month-old 5xFAD animals, is also restored. Importantly, we reveal that the expression of microglial factors linked to phagocytic activity, such as TREM2 and CTSD, and other factors related to amyloid beta clearance and involved in neuron–glia crosstalk, such as complement component C3 and complement receptor C3AR, are specifically upregulated in 5xFAD/FAAH−/− animals. Conclusion: In summary, our findings support the therapeutic potential of modulating, rather than suppressing, neuroinflammation in Alzheimer’s disease. In our model, the long-term enhancement of the endocannabinoid tone triggered augmented microglial activation and amyloid beta phagocytosis, and a consequent reversal in the neuronal phenotype associated to the disease
  • Item
    Neuronal p38α mediates synaptic and cognitive dysfunction in an Alzheimer’s mouse model by controlling β-amyloid production.
    (Scientific Reports, 2017-03-31) Colié, Sandra; Sarroca, Sara; Palenzuela Muñoz, Rocío; García, Idoia; Matheu, Ander; Corpas, Rubén; Dotti, Carlos G.; Esteban, José A.; Sanfeliu, Coral; Nebreda, Ángel R.
    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N). We found that the neuronal-specific deletion of p38α improves the memory loss and long-term potentiation impairment induced by 5XFAD transgenes. Furthermore, 5XFAD/p38α∆-N mice display reduced amyloid-β accumulation, improved neurogenesis, and important changes in brain cytokine expression compared with 5XFAD mice. Our results implicate neuronal p38α signalling in the synaptic plasticity dysfunction and memory impairment observed in 5XFAD mice, by regulating both amyloid-β deposition in the brain and the relay of this accumulation to mount an inflammatory response, which leads to the cognitive deficits.
  • Item
    Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex.
    (Nature Scientific Reports, 2017) Popescu, Ion R.; Le Kathy, Q.; Palenzuela Muñoz, Rocío; Voglewede, Rebecca; Mostany, Ricardo
    Pyramidal neuron subtypes differ in intrinsic electrophysiology properties and dendritic morphology. However, do different pyramidal neuron subtypes also receive synaptic inputs that are dissimilar in frequency and in excitation/inhibition balance? Unsupervised clustering of three intrinsic parameters that vary by cell subtype – the slow afterhyperpolarization, the sag, and the spike frequency adaptation – split layer 5 barrel cortex pyramidal neurons into two clusters: one of adapting cells and one of non-adapting cells, corresponding to previously described thin- and thick-tufted pyramidal neurons, respectively. Non-adapting neurons presented frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) three- and two-fold higher, respectively, than those of adapting neurons. The IPSC difference between pyramidal subtypes was activity independent. A subset of neurons were thy1-GFP positive, presented characteristics of non-adapting pyramidal neurons, and also had higher IPSC and EPSC frequencies than adapting neurons. The sEPSC/sIPSC frequency ratio was higher in adapting than in non-adapting cells, suggesting a higher excitatory drive in adapting neurons. Therefore, our study on spontaneous synaptic inputs suggests a different extent of synaptic information processing in adapting and non-adapting barrel cortex neurons, and that eventual deficits in inhibition may have differential effects on the excitation/inhibition balance in adapting and non-adapting neurons.
  • Item
    Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory.
    (Nature Communications, 2019) Navarrete, Marta; Cuartero, María I.; Palenzuela Muñoz, Rocío; Draffin, Jonathan E.; Konomi, Ainoa; Serra, Irene; Colié, Sandra; Castaño Castaño, Sergio; Hasan, Mazahir T.; Nebreda, Ángel R.; Esteban, José A.
    NMDA receptor-dependent long-term depression (LTD) in the hippocampus is a well-known form of synaptic plasticity that has been linked to different cognitive functions. The core mechanism for this form of plasticity is thought to be entirely neuronal. However, we now demonstrate that astrocytic activity drives LTD at CA3-CA1 synapses. We have found that LTD induction enhances astrocyte-to-neuron communication mediated by glutamate, and that Ca2+ signaling and SNARE-dependent vesicular release from the astrocyte are required for LTD expression. In addition, using optogenetic techniques, we show that low-frequency astrocytic activation, in the absence of presynaptic activity, is sufficient to induce postsynaptic AMPA receptor removal and LTD expression. Using cell-type-specific gene deletion, we show that astrocytic p38α MAPK is required for the increased astrocytic glutamate release and astrocyte-to-neuron communication during low-frequency stimulation. Accordingly, removal of astrocytic (but not neuronal) p38α abolishes LTD expression. Finally, this mechanism modulates long-term memory in vivo.
  • Item
    Insulin regulates neurovascular coupling through astrocytes.
    (Proceedings of the National Academy of Sciences (PNAS), 2022) Fernánez, Ana; Palenzuela Muñoz, Rocío; Ruiz de Martín Esteban, Samuel; Torres Aleman, Ignacio
    Circulating insulin enters the brain through mechanisms incompletely characterized. We now report that mice lacking insulin receptors (IR) in astrocytes (GFAP-IR KO mice) show blunted brain responses to insulin, uncoupling of brain blood flow with glucose uptake with concomitant changes in brain vasculature and glucose transporter 1 levels. IR-deficient astrocytes show increased expression of HIF-1α/VEGF, promote growth of co-cultured endothelial cells, display increased reactive oxidant species (ROS) and disturbed mitochondrial activity. Treatment with the antioxidant N-acetylcysteine (NAC), ameliorated high ROS levels, normalized angiogenic signaling, and mitochondrial function including mitochondrial glucose and oxygen sensors. In vivo treatment with NAC also normalized brain perfusion. Thus, insulin receptors in astrocytes regulate neuro-vascular coupling.
  • Item
    MAP1B Light Chain Modulates Synaptic Transmission via AMPA Receptor Intracellular Trapping.
    (Journal of Neuroscience, 2017) Palenzuela Muñoz, Rocío; Gutiérrez, Yolanda; Draffin, Jonathan E.; Lario, Argentina; Benoist, Marion; Esteban, José A.
    The regulated transport of AMPA-type glutamate receptors (AMPARs) to the synaptic membrane is a key mechanism to determine the strength of excitatory synaptic transmission in the brain. In this work, we uncovered a new role for the microtubule-associated protein MAP1B in modulating access of AMPARs to the postsynaptic membrane. Using mice and rats of either sex, we show that MAP1B light chain (LC) accumulates in the somatodendritic compartment of hippocampal neurons, where it forms immobile complexes on microtubules that limit vesicular transport. These complexes restrict AMPAR dendritic mobility, leading to the intracellular trapping of receptors and impairing their access to the dendritic surface and spines. Accordingly, increasing MAP1B-LC expression depresses AMPAR-mediated synaptic transmission. This effect is specific for the GluA2 subunit of the AMPAR and requires glutamate receptor interacting protein 1 (GRIP1) interaction with MAP1B-LC. Therefore, MAP1B-LC represents an alternative link between GRIP1-AMPARs and microtubules that does not result in productive transport, but rather limits AMPAR availability for synaptic insertion, with a direct impact on synaptic transmission.