The Calcium Signal for Balb/MK Keratinocyte Terminal Differentiation Induces Sustained Alterations in Phosphoinositide Metabolism without Detectable Protein Kinase C Activation.

Loading...
Thumbnail Image
Identifiers

Publication date

1989

Start date of the public exhibition period

End date of the public exhibition period

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Journal of Biological Chemistry
Metrics
Google Scholar
Share

Research Projects

Organizational Units

Journal Issue

Abstract

Balb/MK keratinocytes require epidermal growth factor for proliferation and terminally differentiate in response to elevated extracellular Ca2+ concentrations. The molecular pathways controlling cell differentiation in this system have yet to be established. We show that a dramatic and sustained activation of phosphoinositide metabolism is produced upon addition of Ca2+ to Balb/MK cultures. The pattern of inositol trisphosphate isomers released in response to Ca2+ challenge appeared to be atypical. Inositol 1,3,4-trisphosphate release was observed by 30 s and was produced earlier than any alteration in inositol 1,4,5-trisphosphate levels. Concomitant with the liberation of inositol phosphates, an increased production of diacylglycerol was observed. Despite a 3-fold increase in diacylglycerol levels detected even at 12 h after Ca2+ addition, no evidence of functional activation or down-regulation of protein kinase C was found. This was established by measuring p80 phosphorylation, epidermal growth factor binding, and protein kinase C levels by immunoblotting. Analysis of the diacylglycerol generated following Ca2+ addition to Balb/MK cells revealed that a significant proportion of that lipid was an alkyl ether glyceride molecular species. Therefore, it is possible that this diacylglycerol molecular species may play a role in the Ca2+-induced differentiation program of Balb/MK cells through mechanisms other than stimulation of classical protein kinase C.

Doctoral program

Description

Keywords

Citation